Thin Current Sheets in the Magnetotail at Lunar Distances: Statistics of ARTEMIS Observations

被引:2
|
作者
Kamaletdinov, S. R. [1 ,2 ]
Artemyev, A. V. [1 ,2 ]
Runov, A. [1 ]
Angelopoulos, V. [1 ]
机构
[1] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA 90095 USA
[2] Russian Acad Sci, Space Res Inst, Moscow, Russia
基金
美国国家航空航天局;
关键词
magnetotail; current sheet; solar-wind; magnetosphere coupling; PLASMA SHEET; SOLAR-WIND; MAGNETIC-FIELD; GEOMAGNETIC-ACTIVITY; ELECTRIC-CURRENT; ION FLOWS; RECONNECTION; DYNAMICS; CLUSTER; MODEL;
D O I
10.1029/2023JA032130
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The magnetotail current sheet's (CSs) spatial configuration and stability control the onset of magnetic reconnection - the driving process for magnetospheric substorms. The near-Earth CS has been thoroughly investigated by numerous missions, whereas the midtail CS has not been adequately explored. This is especially the case for the long-term variation of its configuration in response to the solar wind. We present a statistical analysis of 1261 magnetotail CS crossings by the Acceleration, Reconnection, Turbulence and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS) mission orbiting the moon (X similar to -60 RE), collected during the entirety of Solar Cycle 24. We demonstrate that the magnetotail CS typically remains extremely thin, with a characteristic thickness comparable to the thermal ion gyroradius, even at large distances from Earth's dipole. We also find that a substantial fraction (similar to one quarter) of the observed CSs have a partially force-free magnetic field configuration, with a significant contribution of the magnetic field shear component to the pressure balance. Further, we quantify the impact of the changing solar wind driving conditions on the properties of the midtail around the lunar orbit. During active solar wind driving conditions, we observe an increase in the occurrence rate of thin CSs, whereas quiet solar wind driving conditions seem to favor the formation of partially force-free CSs. We present a statistical analysis of magnetotail current sheets (CSs) collected by the ARTEMIS mission during 11 years of observations at similar to 60RE downtail We observe a large population (similar to 56%) of ion-kinetic scale CSs and a smaller population of partially force-free CSs (similar to 24%) We discuss the relationship between CS properties and solar wind driving conditions
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Analysis of magnetotail flux rope events by ARTEMIS observations
    Tian AnMin
    Shi QuanQi
    Zong QiuGang
    Du Jian
    Fu SuiYan
    Dai YaNan
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2014, 57 (05) : 1010 - 1019
  • [32] Analysis of magnetotail flux rope events by ARTEMIS observations
    AnMin Tian
    QuanQi Shi
    QiuGang Zong
    Jian Du
    SuiYan Fu
    YaNan Dai
    Science China Technological Sciences, 2014, 57 : 1010 - 1019
  • [33] Model-based constraints on the lunar exosphere derived from ARTEMIS pickup ion observations in the terrestrial magnetotail
    Poppe, A. R.
    Halekas, J. S.
    Samad, R.
    Sarantos, M.
    Delory, G. T.
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2013, 118 (05) : 1135 - 1147
  • [34] Analysis of magnetotail flux rope events by ARTEMIS observations
    TIAN AnMin
    SHI QuanQi
    ZONG QiuGang
    DU Jian
    FU SuiYan
    DAI YaNan
    Science China(Technological Sciences), 2014, (05) : 1010 - 1019
  • [35] Statistical survey on the magnetic field in magnetotail current sheets: Cluster observations
    LUCEK E
    BALOGH A
    ChineseScienceBulletin, 2010, 55 (23) : 2545 - 2550
  • [36] Statistical survey on the magnetic field in magnetotail current sheets: Cluster observations
    Rong ZhaoJin
    Shen Chao
    Lucek, E.
    Balogh, A.
    Yao Li
    CHINESE SCIENCE BULLETIN, 2010, 55 (23): : 2542 - 2547
  • [37] Properties of Quiet Magnetotail Plasma Sheet at Lunar Distances
    Runov, A.
    Angelopoulos, V.
    Khurana, K.
    Liu, J.
    Balikhin, M.
    Artemyev, A. V.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2023, 128 (11)
  • [38] Cluster statistics of thin current sheets in the Earth magnetotail: Specifics of the dawn flank, proton temperature profiles and electrostatic effects
    Artemyev, A. V.
    Petrukovich, A. A.
    Nakamura, R.
    Zelenyi, L. M.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2011, 116
  • [39] Formation of thin current sheets in the magnetotail: Effects of propagating boundary deformations
    Birn, J
    Schindler, K
    Hesse, M
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2003, 108 (A9)
  • [40] FORMATION OF THIN CURRENT SHEETS IN A QUASI-STATIC MAGNETOTAIL MODEL
    WIEGELMANN, T
    SCHINDLER, K
    GEOPHYSICAL RESEARCH LETTERS, 1995, 22 (15) : 2057 - 2060