Multiview Fusion Driven 3-D Point Cloud Semantic Segmentation Based on Hierarchical Transformer

被引:3
|
作者
Xu, Wang [1 ]
Li, Xu [1 ]
Ni, Peizhou [1 ]
Guang, Xingxing [2 ,3 ]
Luo, Hang [2 ,3 ]
Zhao, Xijun [2 ,3 ]
机构
[1] Southeast Univ, Sch Instrument Sci & Engn, Nanjing 210096, Peoples R China
[2] China North Artificial Intelligence & Innovat Res, Beijing 100072, Peoples R China
[3] Collective Intelligence & Collaborat Lab CIC, Beijing 100072, Peoples R China
关键词
3-D point cloud; multihead attention; multiview fusion; semantic segmentation;
D O I
10.1109/JSEN.2023.3328603
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Three-dimensional semantic segmentation is a key task of environment understanding in various outdoor scenes. Due to the sparsity and varying density of point clouds, it becomes challenging to obtain fine-gained segmentation results. Previous point-based and voxel-based methods suffer from the expensive computational cost. Recent 2-D projection-based methods, including range-view (RV), bird-eye-view (BEV), and multiview fusion methods, can run in real time, but the information loss during the projection leads to the low accuracy. Also, we find that the occlusion and interlacing problems exist in single projection-based methods and most multiview fusion networks only focus on the output-level fusion. Considering the above issues, we propose a multilevel multiview fusion network using attention modules and hierarchical transformer, which ensures the effectiveness and efficiency mainly by the following three aspects: 1) the spatial-channel attention module (SCAM) integrates contextual information between points and learn differences of each channel's features; 2) the proposed geometry-based multiprojection fusion module (GMFM) achieves the geometric feature alignment between RV and BEV and fuses the features of the two views at both feature level and output level; and 3) we introduce KPConv to replace KNN, which can reduce the information loss during the postprocessing. Experiments are conducted on both structured and unstructured datasets, including urban dataset SemanticKITTI and off-road dataset Rellis3D. Our results achieve a better performance compared to other projection-based methods and are comparable with the state-of-the-art Cylinder3D.
引用
收藏
页码:31461 / 31470
页数:10
相关论文
共 50 条
  • [41] Graph Transformer for 3D point clouds classification and semantic segmentation
    Zhou, Wei
    Wang, Qian
    Jin, Weiwei
    Shi, Xinzhe
    He, Ying
    COMPUTERS & GRAPHICS-UK, 2024, 124
  • [42] Multi-view Network with Transformer for Point Cloud Semantic Segmentation
    Hua, Zhongwei
    Du, Daming
    6TH INTERNATIONAL CONFERENCE ON INNOVATION IN ARTIFICIAL INTELLIGENCE, ICIAI2022, 2022, : 161 - 165
  • [43] SectionKey: 3-D Semantic Point Cloud Descriptor for Place Recognition
    Jin, Shutong
    Wu, Zhenyu
    Zhao, Chunyang
    Zhang, Jun
    Peng, Guohao
    Wang, Danwei
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 9905 - 9910
  • [44] PReFormer: A memory-efficient transformer for point cloud semantic segmentation
    Akwensi, Perpetual Hope
    Wang, Ruisheng
    Guo, Bo
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 128
  • [45] Point cloud semantic segmentation with adaptive spatial structure graph transformer
    Han, Ting
    Chen, Yiping
    Ma, Jin
    Liu, Xiaoxue
    Zhang, Wuming
    Zhang, Xinchang
    Wang, Huajuan
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 133
  • [46] SemanticVoxels: Sequential Fusion for 3D Pedestrian Detection using LiDAR Point Cloud and Semantic Segmentation
    Fei, Juncong
    Chen, Wenbo
    Heidenreich, Philipp
    Wirges, Sascha
    Stiller, Christoph
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTISENSOR FUSION AND INTEGRATION FOR INTELLIGENT SYSTEMS (MFI), 2020, : 185 - 190
  • [47] Research of Deep Learning-Based Semantic Segmentation for 3D Point Cloud
    Wang, Tao
    Wang, Wenju
    Cai, Yu
    Computer Engineering and Applications, 2024, 57 (23) : 18 - 26
  • [48] 3D Point Cloud Semantic Segmentation Based PAConv and SE_variant
    ZHANG Ying
    SUN Yue
    WU Lin
    ZHANG Lulu
    MENG Bumin
    Instrumentation, 2023, 10 (04) : 27 - 38
  • [49] 3D Point Cloud Semantic Segmentation Network Based on Coding Feature Learning
    Tong, Guofeng
    Liu, Yongxu
    Peng, Hao
    Shao, Yuyuan
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2023, 36 (04): : 313 - 326
  • [50] Semantic segmentation feature fusion network based on transformer
    Tianping Li
    Zhaotong Cui
    Hua Zhang
    Scientific Reports, 15 (1)