Identification of lymphoma types using 2D light scattering microscopy and machine learning

被引:0
|
作者
Xu, Rui [1 ]
Zhang, Ning [1 ]
Chen, Weiwei [1 ,2 ]
Li, Yawei [1 ,3 ]
Li, Yuxin [4 ]
Xie, Linyan [1 ]
机构
[1] Xinxiang Med Univ, Coll Med Engn, Urumqi 453003, Henan, Peoples R China
[2] Fifth Peoples Hosp Huaian, Dept Radiotherapy, Huaian 223300, Jiangsu, Peoples R China
[3] Henan Prov Peoples Hosp, Dept Ultrasound, Zhengzhou 453003, Henan, Peoples R China
[4] Xinxiang Med Univ, Coll First Clin Med, Xinxiang 453003, Henan, Peoples R China
关键词
Light scattering pattern; static cytometry; cancer screening; machine learning; single-cell;
D O I
10.1117/12.2689007
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Lymphomas encompass Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL). Accurate clinical diagnosis is paramount for informed treatment and prognosis, and lymphoma classification plays a central role in guiding treatment strategies and evaluating treatment outcomes. In this study, we have developed a static cytometry leveraging laser and microscope technology to capture two-dimensional (2D) light scattering patterns of individual cells. Within this method, a single lymphoma cell is positioned in a liquid-based chip and vertically stimulated by a 532 nm green laser. The resulting light scattering pattern of the cell is observed and recorded by a COMS detector through a microscope optical system, covering a polar angle range of 75 to 105 degrees. The light scattering pattern exhibited by lymphoma cells displays distinct speckles, with the texture features of these speckles influenced by internal cell structures, including organelle count and their spatial arrangement. By extracting and analyzing the characteristic values from these cell scattering patterns, we can achieve lymphoma cell identification. In this study, we successfully differentiated between HDLM-2 cells (HL) and Daudi cells (NHL) using the machine learning support vector machine (SVM) algorithm, achieving a classification accuracy of 88%. This outcome underscores the potential of our 2D light scattering static cytometry for lymphoma cell classification, offering a marker-free, cost-effective approach for early cancer screening at the single-cell level.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] When Machine Learning Meets 2D Materials: A Review
    Lu, Bin
    Xia, Yuze
    Ren, Yuqian
    Xie, Miaomiao
    Zhou, Liguo
    Vinai, Giovanni
    Morton, Simon A.
    Wee, Andrew T. S.
    van der Wiel, Wilfred G.
    Zhang, Wen
    Wong, Ping Kwan Johnny
    ADVANCED SCIENCE, 2024, 11 (13)
  • [42] Full interpretable machine learning in 2D with inline coordinates
    Kovalerchuk, Boris
    Phan, Hoang
    2021 25TH INTERNATIONAL CONFERENCE INFORMATION VISUALISATION (IV): AI & VISUAL ANALYTICS & DATA SCIENCE, 2021, : 189 - 196
  • [43] Exploring and machine learning structural instabilities in 2D materials
    Simone Manti
    Mark Kamper Svendsen
    Nikolaj R. Knøsgaard
    Peder M. Lyngby
    Kristian S. Thygesen
    npj Computational Materials, 9
  • [44] On the Technologies of Artificial Intelligence and Machine Learning for 2D Materials
    D. Yu. Kirsanova
    M. A. Soldatov
    Z. M. Gadzhimagomedova
    D. M. Pashkov
    A. V. Chernov
    M. A. Butakova
    A. V. Soldatov
    Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2021, 15 : 485 - 494
  • [45] Machine learning transition temperatures from 2D structure
    Sifain, Andrew E.
    Rice, Betsy M.
    Yalkowsky, Samuel H.
    Barnes, Brian C.
    JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2021, 105
  • [46] Exploring and machine learning structural instabilities in 2D materials
    Manti, Simone
    Svendsen, Mark Kamper
    Knosgaard, Nikolaj R. R.
    Lyngby, Peder M. M.
    Thygesen, Kristian S. S.
    NPJ COMPUTATIONAL MATERIALS, 2023, 9 (01)
  • [47] On the Technologies of Artificial Intelligence and Machine Learning for 2D Materials
    Kirsanova, D. Yu.
    Soldatov, M. A.
    Gadzhimagomedova, Z. M.
    Pashkov, D. M.
    Chernov, A. V.
    Butakova, M. A.
    Soldatov, A. V.
    JOURNAL OF SURFACE INVESTIGATION, 2021, 15 (03): : 485 - 494
  • [48] Scientific Machine Learning of 2D Perovskite Nanosheet Formation
    Dahl, Jakob C.
    Niblett, Samuel
    Cho, Yeongsu
    Wang, Xingzhi
    Zhang, Ye
    Chan, Emory M.
    Alivisatos, A. Paul
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (42) : 23076 - 23087
  • [49] Machine Learning Study of the Magnetic Ordering in 2D Materials
    Acosta, Carlos Mera
    Ogoshi, Elton
    Souza, Jose Antonio
    Dalpian, Gustavo M.
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (07) : 9418 - 9432
  • [50] Inelastic light scattering by 2D electron system with SO interaction
    Chaplik, Alexander V.
    Magarill, Lev I.
    Vitlina, Ritta Z.
    NANOSCALE RESEARCH LETTERS, 2012, 7