Enhancing Deep Learning Soil Moisture Forecasting Models by Integrating Physics-based Models

被引:5
|
作者
Li, Lu [1 ,2 ,3 ]
Dai, Yongjiu [1 ,2 ,3 ]
Wei, Zhongwang [1 ,2 ,3 ]
Wei, Shangguan [1 ,2 ,3 ]
Wei, Nan [1 ,2 ,3 ]
Zhang, Yonggen [4 ]
Li, Qingliang [5 ]
Li, Xian-Xiang [1 ,2 ,3 ]
机构
[1] Sun Yat Sen Univ, Sch Atmospher Sci, Guangzhou 510275, Peoples R China
[2] Southern Marine Sci & Engn Guangdong Lab Zhuhai, Guangzhou 510275, Peoples R China
[3] Guangdong Prov Key Lab Climate Change & Nat Disast, Guangzhou 510275, Peoples R China
[4] Tianjin Univ, Inst Surface Earth Syst Sci, Sch Earth Syst Sci, Tianjin 300072, Peoples R China
[5] Changchun Normal Univ, Coll Comp Sci & Technol, Changchun 130123, Peoples R China
关键词
soil moisture forecasting; hybrid model; deep learning; ConvLSTM; attention mechanism; IN-SITU; SURFACE; INDEX; SATELLITE;
D O I
10.1007/s00376-023-3181-8
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Accurate soil moisture (SM) prediction is critical for understanding hydrological processes. Physics-based (PB) models exhibit large uncertainties in SM predictions arising from uncertain parameterizations and insufficient representation of land-surface processes. In addition to PB models, deep learning (DL) models have been widely used in SM predictions recently. However, few pure DL models have notably high success rates due to lacking physical information. Thus, we developed hybrid models to effectively integrate the outputs of PB models into DL models to improve SM predictions. To this end, we first developed a hybrid model based on the attention mechanism to take advantage of PB models at each forecast time scale (attention model). We further built an ensemble model that combined the advantages of different hybrid schemes (ensemble model). We utilized SM forecasts from the Global Forecast System to enhance the convolutional long short-term memory (ConvLSTM) model for 1-16 days of SM predictions. The performances of the proposed hybrid models were investigated and compared with two existing hybrid models. The results showed that the attention model could leverage benefits of PB models and achieved the best predictability of drought events among the different hybrid models. Moreover, the ensemble model performed best among all hybrid models at all forecast time scales and different soil conditions. It is highlighted that the ensemble model outperformed the pure DL model over 79.5% of in situ stations for 16-day predictions. These findings suggest that our proposed hybrid models can adequately exploit the benefits of PB model outputs to aid DL models in making SM predictions.
引用
收藏
页码:1326 / 1341
页数:16
相关论文
共 50 条
  • [1] Enhancing Deep Learning Soil Moisture Forecasting Models by Integrating Physics-based Models
    Lu LI
    Yongjiu DAI
    Zhongwang WEI
    Wei SHANGGUAN
    Nan WEI
    Yonggen ZHANG
    Qingliang LI
    XianXiang LI
    Advances in Atmospheric Sciences, 2024, 41 (07) : 1326 - 1341
  • [2] Fusing physics-based and deep learning models for prognostics
    Chao, Manuel Arias
    Kulkarni, Chetan
    Goebel, Kai
    Fink, Olga
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2022, 217
  • [3] Spatiotemporal estimation of groundwater and surface water conditions by integrating deep learning and physics-based watershed models
    Kim, Soobin
    Lee, Eunhee
    Hwang, Hyoun-Tae
    Pyo, Jongcheol
    Yun, Daeun
    Baek, Sang-Soo
    Cho, Kyung Hwa
    WATER RESEARCH X, 2024, 23
  • [4] DEEP LEARNING FOR LIGHT FIELD MICROSCOPY USING PHYSICS-BASED MODELS
    Verinaz-Jadan, Herman
    Song, Pingfan
    Howe, Carmel L.
    Quicke, Peter
    Foust, Amanda J.
    Dragotti, Pier Luigi
    2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 1091 - 1094
  • [5] Integrating Learning-Based Priors With Physics-Based Models in Ultrasound Elasticity Reconstruction
    Mohammadi, Narges
    Goswami, Soumya
    Kabir, Irteza Enan
    Khan, Siladitya
    Feng, Fan
    Mcaleavey, Steve
    Doyley, Marvin M.
    Cetin, Mujdat
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2024, 71 (11) : 1406 - 1419
  • [6] Physics-Based Learning Models for Ship Hydrodynamics
    Weymouth, Gabriel D.
    Yue, Dick K. P.
    JOURNAL OF SHIP RESEARCH, 2013, 57 (01): : 1 - 12
  • [7] Integrated Deep-Learning and Physics-Based Models Improve Production Prediction
    Razak, Syamil M.
    Cornelio, Jodel
    Jahandideh, Atefeh
    JPT, Journal of Petroleum Technology, 2022, 74 (11): : 78 - 80
  • [8] Interpreting and generalizing deep learning in physics-based problems with functional linear models
    Arzani, Amirhossein
    Yuan, Lingxiao
    Newell, Pania
    Wang, Bei
    ENGINEERING WITH COMPUTERS, 2025, 41 (01) : 135 - 157
  • [9] Nonlinear sparse Bayesian learning for physics-based models
    Sandhu, Rimple
    Khalil, Mohammad
    Pettit, Chris
    Poirel, Dominique
    Sarkar, Abhijit
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 426
  • [10] Physics-based memristor models
    Williams, R. Stanley
    Pickett, Matthew D.
    Strachan, John Paul
    2013 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2013, : 217 - 220