Integrated metabolomic and transcriptomic analyses provide comprehensive new insights into the mechanism of chitosan delay of kiwifruit postharvest ripening

被引:3
|
作者
Yang, Haiying [1 ,2 ]
Zhang, Xueli [1 ]
Wu, Rui [1 ]
Tang, Xiaoli [3 ]
Yang, Yanqing [1 ]
Fan, Xinguang [1 ]
Gong, Hansheng [1 ]
Grierson, Donald [4 ]
Yin, Xueren [5 ]
Li, Jianzhao [3 ]
Zhang, Aidi [1 ]
机构
[1] Ludong Univ, Yantai Engn Res Ctr Food Green Proc & Qual Control, Sch Food Engn, Yantai Key Lab Nanosci & Technol Prepared Food, Yantai 264025, Peoples R China
[2] Hunan Agr Univ, Coll Food Sci & Technol, Changsha 410125, Peoples R China
[3] Ludong Univ, Engn Res Inst Agr & Forestry, Yantai 264025, Peoples R China
[4] Univ Nottingham, Sch Biosci, Plant & Crop Sci Div, Sutton Bonington Campus, Loughborough LE125RD, England
[5] Anhui Agr Univ, Sch Hort, Hefei 230036, Peoples R China
基金
中国国家自然科学基金;
关键词
Kiwifruit; Chitosan; Fruit ripening; Transcriptome; Metabolome; CELL-WALL METABOLISM; ACTINIDIA-CHINENSIS; FRUIT; ETHYLENE; IDENTIFICATION; COATINGS; STARCH; PEACH; ACID;
D O I
10.1016/j.postharvbio.2023.112746
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Chitosan (CTS) plays an important role in delaying fruit ripening and extending fruit shelf life when used as an eco-friendly and edible coating. However, there is still limited understanding about the molecular mechanisms and effects of chitosan on the quality of postharvest kiwifruit. In this study, firmness, total soluble solid, acid, phenolic content, flavonoid content, starch and ascorbic acid concentration, ethylene production, and cell-wall components were determined after CTS treatment. Fruit treated with CTS maintained higher firmness, starch and flavonoids (3.85-, 1.78-and 2.08-fold higher, respectively, after 6d compared to the control). Widely targeted metabolome analysis revealed flavonoids (dihydrokaempferol-7-O-glucoside, eriodictyol-3 '-O-glucoside) and lipids (LysoPC 16:0 (2 n isomer)), and punicic acid (9Z,11E,13Z-octadecatrienoic acid) were the main differential metabolites. KEGG pathway enrichment analysis showed 'metabolic pathways (ko01100)' and 'biosynthesis of secondary metabolites (ko01110)' were the main KEGG pathways. Integrated metabolomic and transcriptomic analyses revealed that the expression of five key structural genes, including three starch degradation genes (AcBAM3L, AcBAM3.1, Acc31818 (PHS)), one cell-wall modification gene (AcPG1), and one flavonoids biosynthesis gene (Acc18331 (F3'H)), and 12 transcription factors (AcNAC083, AcRAP2-10, AcERF14, AcERF64, Acc27131 (bZIP), AcHSFB2a, Acc12589 (IAA), AcMYB13, Acc20159 (bHLH), AcBEL1, AcbHLH149, AcWRKY75) were different. Real-time PCR analyses verified that the expression of AcBAM3L, AcBAM3.1, AcPG1 and most of the 12 transcription factors were suppressed by CTS treatment, while the expression of Acc31818 (PHS), Acc18331 (F3'H) and AcBEL1 were enhanced by CTS treatment. Together, these CTS-responsive genes may play critical roles in determining the rate of ripening and quality change of postharvest kiwifruit.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Integrated metabolomic and transcriptomic analyses provide insights into regulation mechanisms during bulbous stem development in the Chinese medicinal herb plant, Stephania kwangsiensis
    Huang, Hao
    Wei, Ying
    Huang, Shaojun
    Lu, Shijian
    Su, Huasheng
    Ma, Liuhui
    Huang, Weiping
    BMC PLANT BIOLOGY, 2024, 24 (01)
  • [42] Integrated metabolic, transcriptomic and chromatin accessibility analyses provide novel insights into the competition for anthocyanins and flavonols biosynthesis during fruit ripening in red apple
    Cheng, Chunzhen
    Guo, Ziwei
    Li, Hua
    Mu, Xiaopeng
    Wang, Pengfei
    Zhang, Shuai
    Yang, Tingzhen
    Cai, Huacheng
    Wang, Qian
    Lu, Peitao
    Zhang, Jiancheng
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [43] Proteomic and Transcriptomic Analyses Provide New Insights into the Mechanism Underlying Lipid Deterioration in Pecan Kernels during Storage
    Jia, Xiaodong
    Xu, Mengyang
    Tan, Wenyue
    Wang, Ziyan
    Guo, Zhongren
    Yang, Xufeng
    Liu, Chenghang
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2024, 72 (17) : 10127 - 10137
  • [44] Integrated metabolomic and transcriptomic analyses of quality components and associated molecular regulation mechanisms during passion fruit ripening
    Xin, Ming
    Li, Changbao
    He, Xuemei
    Li, Li
    Yi, Ping
    Tang, Yayuan
    Li, Jiemin
    Liu, Guoming
    Sheng, Jinfeng
    Sun, Jian
    POSTHARVEST BIOLOGY AND TECHNOLOGY, 2021, 180
  • [45] Transcriptomic and metabolic analyses provide new insights into chilling injury in peach fruit
    Wang, Ke
    Yin, Xue-Ren
    Zhang, Bo
    Grierson, Don
    Xu, Chang-Jie
    Chen, Kun-Song
    PLANT CELL AND ENVIRONMENT, 2017, 40 (08): : 1531 - 1551
  • [46] Metabolomic and Transcriptomic Analyses Provide New Insights into Health-Promoting Metabolites from Cannabis Seeds Growing in the Bama Region of China
    Duan, Mingzheng
    Rao, Muhammad Junaid
    Li, Qing
    Zhao, Falin
    Fan, Hongzeng
    Li, Bo
    He, Dandan
    Han, Shijian
    Zhang, Jiangjiang
    Wang, Lingqiang
    AGRONOMY-BASEL, 2024, 14 (04):
  • [47] Metabolomic and transcriptomic analyses reveal the regulation mechanism of postharvest light-induced phenolics accumulation in mango peel
    Yang, Chengkun
    Wang, Xiaowen
    Zhu, Wencan
    Weng, Zhongrui
    Li, Feili
    Zhang, Yawen
    Wu, Hongxia
    Zhou, Kaibing
    Strid, Åke
    Qian, Minjie
    LWT, 2024, 213
  • [48] Integrated biochemical, transcriptomic and metabolomic analyses provide insight into heat stress response in Yangtze sturgeon (Acipenser dabryanus)
    Chen, Yeyu
    Wu, Xiaoyun
    Lai, Jiansheng
    Liu, Ya
    Song, Mingjiang
    Li, Feiyang
    Gong, Quan
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2023, 249
  • [49] Integrated Physiological, Transcriptomic, and Metabolomic Analyses Revealed Molecular Mechanism for Salt Resistance in Soybean Roots
    Jin, Jie
    Wang, Jianfeng
    Li, Keke
    Wang, Shengwang
    Qin, Juan
    Zhang, Guohong
    Na, Xiaofan
    Wang, Xiaomin
    Bi, Yurong
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (23)
  • [50] Integrated transcriptomic and metabolomic analysis reveals the effects and potential mechanism of hydrogen peroxide on pigment metabolism in postharvest broccoli
    Wang, Yunqiao
    Zhang, Yuxiao
    Guo, Yanyin
    Ji, Nana
    Chen, Ying
    Sun, Yupeng
    Wang, Zhengli
    Guan, Lingxing
    Guo, Pengcheng
    JOURNAL OF FOOD SCIENCE, 2024,