SAR U-Net: Spatial attention residual U-Net structure for water body segmentation from remote sensing satellite images

被引:2
|
作者
Jonnala, Naga Surekha [1 ]
Gupta, Neha [1 ]
机构
[1] VIT AP Univ, Sch Elect Engn, Amaravati 522237, AP, India
关键词
Water Body Segmentation; Residual Block; U-Net; Spatial Attention Module; Satellite Images; EXTRACTION;
D O I
10.1007/s11042-023-16965-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The analysis of remote-sensing images always requires the extraction of data about the aquatic environment. However, it might be challenging to identify any water surface since the backgrounds of water zones in remote sensing images are usually complicated structures and dense vegetation. Furthermore, less significant tributaries and edge data could not be accurately detected using traditional water detection methods. As a result, a spatial attention residual U-Net architecture is proposed to enhance the effectiveness of water body segmentation. The suggested approach reweights the feature representation spatially to obtain data on water features, using U-Net as the network architecture. The feature of the water zone is obtained using the residual block. It obtains more precise local position data for the water zone, which enhance edge segmentation accuracy. The spatial attention module retrieves, segregates, and combines the low-level information and high-level information as two discrete inputs in various dimensions. To effectively segregate the water region from the context, the spatial attention module combines spatial features with deep contextual information. The experiments are performed using satellite images of kaggle dataset aquatic bodies and a real-time dataset. The results of the experiments reveal 96% of accuracy that the suggested strategy out performs the existing models.
引用
收藏
页码:44425 / 44454
页数:30
相关论文
共 50 条
  • [41] An Enhanced Residual U-Net for Microaneurysms and Exudates Segmentation in Fundus Images
    Kou, Caixia
    Li, Wei
    Yu, Zekuan
    Yuan, Luzhan
    IEEE ACCESS, 2020, 8 : 185514 - 185525
  • [42] Auto-Segmentation On Liver With U-Net And Pixel Deconvolutional U-Net
    Yao, H.
    Chang, J.
    MEDICAL PHYSICS, 2020, 47 (06) : E584 - E584
  • [43] SCAU-Net: Spatial-Channel Attention U-Net for Gland Segmentation
    Zhao, Peng
    Zhang, Jindi
    Fang, Weijia
    Deng, Shuiguang
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2020, 8
  • [44] S3AR U-Net: A separable squeezed similarity attention-gated residual U-Net for glottis segmentation
    Montalbo, Francis Jesmar P.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 92
  • [45] Dual attention U-net for liver tumor segmentation in CT images
    Alirr, Omar Ibrahim
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2024, 19 (02)
  • [46] Building Detection from Remote Sensing Images Based on Improved U-net
    Ren Xinlei
    Wang Yangping
    Yang Jingyu
    Gao Decheng
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (22)
  • [47] U-Net Ensemble for Enhanced Semantic Segmentation in Remote Sensing Imagery
    Dimitrovski, Ivica
    Spasev, Vlatko
    Loshkovska, Suzana
    Kitanovski, Ivan
    REMOTE SENSING, 2024, 16 (12)
  • [48] Improved U-Net remote sensing image semantic segmentation method
    Hu G.
    Yang C.
    Xu L.
    Shang H.
    Wang Z.
    Qin Z.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2023, 52 (06): : 980 - 989
  • [49] Improved U-Net Network Segmentation Method for Remote Sensing Image
    Zhong, Letian
    Lin, Yong
    Sul, Yian
    Fang, Xianbao
    2022 IEEE 6TH ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC), 2022, : 1034 - 1039
  • [50] Building Extraction from Remote Sensing Images Based on Improved U-Net
    Jin Shu
    Guan Mo
    Bian Yuchan
    Wang Shulei
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (04)