QO-Insight: Inspecting Steered Query Optimizers

被引:0
|
作者
Anneser, Christoph [1 ]
Petruccelli, Mario [1 ]
Tatbul, Nesime [2 ,3 ]
Cohen, David [4 ]
Xu, Zhenggang [5 ]
Pandian, Prithviraj [5 ]
Laptev, Nikolay [5 ]
Marcus, Ryan [6 ]
Kemper, Alfons [1 ]
机构
[1] TUM, Munich, Germany
[2] Intel Labs, Hillsboro, OR USA
[3] MIT, Cambridge, MA 02139 USA
[4] Intel, Santa Clara, CA USA
[5] Meta, Menlo Pk, CA USA
[6] Univ Penn, Philadelphia, PA 19104 USA
来源
PROCEEDINGS OF THE VLDB ENDOWMENT | 2023年 / 16卷 / 12期
关键词
OPTIMIZATION;
D O I
10.14778/3611540.3611586
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Steered query optimizers address the planning mistakes of traditional query optimizers by providing them with hints on a per-query basis, thereby guiding them in the right direction. This paper introduces QO-Insight, a visual tool designed for exploring query execution traces of such steered query optimizers. Although steered query optimizers are typically perceived as black boxes, QO-Insight empowers database administrators and experts to gain qualitative insights and enhance their performance through visual inspection and analysis.
引用
收藏
页码:3922 / 3925
页数:4
相关论文
共 50 条
  • [21] Optimizing Join Enumeration in Transformation-based Query Optimizers
    Shanbhag, Anil
    Sudarshan, S.
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2014, 7 (12): : 1243 - 1254
  • [22] Steering Query Optimizers: A Practical Take on Big Data Workloads
    Negi, Parimarjan
    Interlandi, Matteo
    Marcus, Ryan
    Alizadeh, Mohammad
    Kraska, Tim
    Friedman, Marc
    Jindal, Alekh
    SIGMOD '21: PROCEEDINGS OF THE 2021 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2021, : 2557 - 2569
  • [23] Building Disclosure Risk Aware Query Optimizers for Relational Databases
    Canim, Mustafa
    Kantarcioglu, Murat
    Hore, Bijit
    Mehrotra, Sharad
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2010, 3 (01): : 13 - 24
  • [24] A review of different cost-based distributed query optimizers
    Sharma, Manik
    Singh, Gurvinder
    Singh, Rajinder
    PROGRESS IN ARTIFICIAL INTELLIGENCE, 2019, 8 (01) : 45 - 62
  • [25] A review of different cost-based distributed query optimizers
    Manik Sharma
    Gurvinder Singh
    Rajinder Singh
    Progress in Artificial Intelligence, 2019, 8 : 45 - 62
  • [26] QO-Net: Query Optimization Underwater Object Detection Network
    Tian, Jiandong
    Fan, Baojie
    Sun, Hongyang
    Xu, Hongxin
    2024 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2024), 2024, : 8642 - 8649
  • [27] Design and analysis of stochastic DSS query optimizers in a distributed database system
    Sharma, Manik
    Singh, Gurvinder
    Singh, Rajinder
    EGYPTIAN INFORMATICS JOURNAL, 2016, 17 (02) : 161 - 173
  • [28] Incorporating Super-Operators in Big-Data Query Optimizers
    Leeka, Jyoti
    Rajan, Kaushik
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2019, 13 (03): : 348 - 361
  • [29] Efficient Enumeration of Recursive Plans in Transformation-based Query Optimizers
    Fejza, Amela
    Geneves, Pierre
    Layaida, Nabil
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2024, 17 (11): : 3095 - 3108
  • [30] Data-induced predicates for sideways information passing in query optimizers
    Kandula, Srikanth
    Orr, Laurel
    Chaudhuri, Surajit
    VLDB JOURNAL, 2022, 31 (06): : 1263 - 1290