QO-Insight: Inspecting Steered Query Optimizers

被引:0
|
作者
Anneser, Christoph [1 ]
Petruccelli, Mario [1 ]
Tatbul, Nesime [2 ,3 ]
Cohen, David [4 ]
Xu, Zhenggang [5 ]
Pandian, Prithviraj [5 ]
Laptev, Nikolay [5 ]
Marcus, Ryan [6 ]
Kemper, Alfons [1 ]
机构
[1] TUM, Munich, Germany
[2] Intel Labs, Hillsboro, OR USA
[3] MIT, Cambridge, MA 02139 USA
[4] Intel, Santa Clara, CA USA
[5] Meta, Menlo Pk, CA USA
[6] Univ Penn, Philadelphia, PA 19104 USA
来源
PROCEEDINGS OF THE VLDB ENDOWMENT | 2023年 / 16卷 / 12期
关键词
OPTIMIZATION;
D O I
10.14778/3611540.3611586
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Steered query optimizers address the planning mistakes of traditional query optimizers by providing them with hints on a per-query basis, thereby guiding them in the right direction. This paper introduces QO-Insight, a visual tool designed for exploring query execution traces of such steered query optimizers. Although steered query optimizers are typically perceived as black boxes, QO-Insight empowers database administrators and experts to gain qualitative insights and enhance their performance through visual inspection and analysis.
引用
收藏
页码:3922 / 3925
页数:4
相关论文
共 50 条
  • [1] Learned Query Optimizers
    Ding, Bolin
    Zhu, Rong
    Zhou, Jingren
    FOUNDATIONS AND TRENDS IN DATABASES, 2024, 13 (04): : 250 - 310
  • [2] Parallelizing Extensible Query Optimizers
    Waas, Florian M.
    Hellerstein, Joseph M.
    ACM SIGMOD/PODS 2009 CONFERENCE, 2009, : 871 - 878
  • [3] A Variability Model for Query Optimizers
    Soffner, Michael
    Siegmund, Norbert
    Rosenmueller, Marko
    Siegmund, Janet
    Leich, Thomas
    Saake, Gunter
    DATABASES AND INFORMATION SYSTEMS VII, 2013, 249 : 15 - +
  • [4] Extensible Query Optimizers in Practice
    Ding, Bailu
    Narasayya, Vivek
    Chaudhuri, Surajit
    FOUNDATIONS AND TRENDS IN DATABASES, 2024, 14 (3-4):
  • [5] The Vertica Query Optimizer: The Case for Specialized Query Optimizers
    Tran, Nga
    Lamb, Andrew
    Shrinivas, Lakshmikant
    Bodagala, Sreenath
    Dave, Jaimin
    2014 IEEE 30TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE), 2014, : 1108 - 1119
  • [6] Automating statistics management for query optimizers
    Chaudhuri, S
    Narasayya, V
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2001, 13 (01) : 7 - 20
  • [7] Have query optimizers hit the wall?
    Richard T. Snodgrass
    Sabah Currim
    Young-Kyoon Suh
    The VLDB Journal, 2022, 31 : 181 - 200
  • [8] Learned Query Optimizers: Evaluation and Improvement
    Mikhaylov, Artem
    Mazyavkina, Nina S.
    Salnikov, Mikhail
    Trofimov, Ilya
    Qiang, Fu
    Burnaev, Evgeny
    IEEE ACCESS, 2022, 10 : 75205 - 75218
  • [9] Have query optimizers hit the wall?
    Snodgrass, Richard T.
    Currim, Sabah
    Suh, Young-Kyoon
    VLDB JOURNAL, 2022, 31 (01): : 181 - 200
  • [10] Rule Profiling for Query Optimizers and their Implications
    Chaudhuri, Surajit
    Giakoumakis, Leo
    Narasayya, Vivek
    Ramamurthy, Ravishankar
    26TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING ICDE 2010, 2010, : 1072 - 1080