Dysprosium doped calcium tungstate as an efficient electrode material for the electrochemical energy storage devices

被引:10
|
作者
Rana, Hafiz Talha Hasnain [1 ]
Shad, Naveed Akhtar [2 ]
Hussain, S. [3 ]
Jilani, Asim [4 ]
Umair, Muhammad [1 ]
Sajid, Muhammad Munir [5 ]
Faheem, Muhammad [3 ]
Shah, Attaullah [6 ]
Jamil, Yasir [1 ]
Shafique, Munib Ahmed [7 ]
Javed, Yasir [1 ]
机构
[1] Univ Agr Faisalabad, Dept Phys, Faisalabad, Pakistan
[2] Natl Inst Biotechnol & Genet Engn, Jhang Rd, Faisalabad, Pakistan
[3] Univ Educ Lahore, Dept Phys, Div Sci & Technol, Lahore, Pakistan
[4] King Abdulaziz Univ, Ctr Nanotechnol, Jeddah 21589, Saudi Arabia
[5] Henan Normal Univ, Sch Phys, Henan Key Lab Photovolta Mat, Xinxiang 453007, Peoples R China
[6] Pakistan Inst Engn & Appl Sci, Natl Inst Lasers & Optron Coll, Islamabad 45650, Pakistan
[7] Pakistan Inst Nucl Sci & Technol, Pinstech, Cent Analyt Facil Div, Islamabad, Pakistan
关键词
Dysprosium; Calcium tungstate; Electrochemical properties; Diffusion-controlled mechanism; OPTICAL-PROPERTIES; XPS; NANOPARTICLES; CAWO4; DY;
D O I
10.1016/j.ceramint.2023.03.013
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Tungstate-based nanostructures improve electrochemical performance and offer many advantages due to their charge transport capabilities, excellent corrosion resistance, and superior optical and electrical characteristics. The main purpose of this study is to synthesize the calcium tungstate and dysprosium (Dy) doped calcium tungstate nanomaterials by using the hydrothermal method and investigate the effect of Dy doping on the electrochemical properties of calcium tungstate nanomaterials. The Dy doping changes the structural properties of materials such as a decrease in crystallite size, change in lattice parameters, and volume of the unit cell. The band gap of CaWO4 reduces from 3.32 eV to 3.06 eV with increasing Dy concentration. SEM images reveal the spherical shape of the CaWO4 and Dy (0.8%) doped CaWO4 nanomaterials. The electrochemical properties show that Dy doping enhances the performance of CaWO4 nanomaterials as a supercapacitor. The specific capacity increases to 624 C/g with 0.8% Dy doping in CaWO4 as compared to 115 C/g of undoped CaWO4 at a sweep rate of 5 mV/s. The theoretical evaluation shows that the diffusion-controlled mechanism dominates with the increasing sweep rate which presents the potential of Dy (0.8%) doped CaWO4 for supercapattery-based hybrid devices.
引用
收藏
页码:18896 / 18905
页数:10
相关论文
共 50 条
  • [31] Characterization of bi-material electrodes for electrochemical hybrid energy storage devices
    Cericola, D.
    Ruch, P. W.
    Koetz, R.
    Novak, P.
    Wokaun, A.
    ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (06) : 812 - 815
  • [32] Material extrusion of electrochemical energy storage devices for flexible and wearable electronic applications
    Nath, Sudhansu Sekhar
    Patil, Ishant G.
    Sundriyal, Poonam
    JOURNAL OF ENERGY STORAGE, 2024, 79
  • [33] Economic and environment friendly carbon decorated electrode for efficient energy storage devices
    Singh, Nirbhay
    Tanwar, Shweta
    Sharma, A. L.
    Yadav, B. C.
    JOURNAL OF ENERGY STORAGE, 2023, 66
  • [34] Synthesis and electrochemical characterization of pseudocapacitive α-MoO3 thin film as transparent electrode material in optoelectronic and energy storage devices
    Adewinbi, Saheed A.
    Taleatu, Bidini A.
    Busari, Rafiu A.
    Maphiri, Vusani M.
    Oyedotun, Kabir O.
    Manyala, Ncholu
    MATERIALS CHEMISTRY AND PHYSICS, 2021, 264
  • [35] Three dimensional NiO nanonetwork electrode for efficient electrochemical energy storage application
    Joseph, Nikhitha
    Shafi, P. Muhammed
    Sethulakshmi, J. S.
    Karthik, Raj
    Bose, A. Chandra
    Shim, Jae-Jin
    ELECTROCHIMICA ACTA, 2021, 399
  • [36] Electrochemical Nanowire Devices for Energy Storage
    Mai, Liqiang
    Wei, Qiulong
    Tian, Xiaocong
    Zhao, Yunlong
    An, Qinyou
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2014, 13 (01) : 10 - 15
  • [37] Stretchable electrochemical energy storage devices
    Mackanic, David G.
    Chang, Ting-Hsiang
    Huang, Zhuojun
    Cui, Yi
    Bao, Zhenan
    CHEMICAL SOCIETY REVIEWS, 2020, 49 (13) : 4466 - 4495
  • [38] Graphdiyne for Electrochemical Energy Storage Devices
    Shen Xiangyan
    He Jianjiang
    Wang Ning
    Huang Changshui
    ACTA PHYSICO-CHIMICA SINICA, 2018, 34 (09) : 1029 - 1047
  • [39] Electrochemical properties of different Mn dioxides: Application as electrode materials in energy storage devices
    Athouel, Laurence
    Crosnier, Olivier
    Belanger, Daniel
    Brousse, Thierry
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 237
  • [40] An Overview of Flexible Electrode Materials/Substrates for Flexible Electrochemical Energy Storage/Conversion Devices
    Shang, Kezheng
    Gao, Jiyuan
    Yin, Ximeng
    Ding, Yichun
    Wen, Zhenhai
    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2021, 2021 (07) : 606 - 619