A Multirule-Based Relative Radiometric Normalization for Multisensor Satellite Images

被引:2
|
作者
Xu, Hanzeyu [1 ,2 ]
Zhou, Yuyu [3 ]
Wei, Yuchun [1 ,2 ]
Guo, Houcai [1 ,2 ]
Li, Xiao [4 ]
机构
[1] Nanjing Normal Univ, Jiangsu Ctr Collaborat Innovat Geog Informat Resou, Key Lab Virtual Geog Environm, Minist Educ, Nanjing 210023, Peoples R China
[2] Nanjing Normal Univ, Sch Geog, Nanjing 210023, Peoples R China
[3] Univ HongKong, Dept Geog, Hong Kong 999077, Peoples R China
[4] Univ Oxford, Transport Studies Unit, Oxford OX1 3QY, England
基金
中国国家自然科学基金;
关键词
Log-Gabor filter; multisensor images; partial least squares (PLS); pseudo-invariant features (PIFs); radiometric consistency; relative radiometric normalization (RRN); REGRESSION;
D O I
10.1109/LGRS.2023.3298505
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Relative radiometric normalization (RRN) is a widely used method for enhancing the radiometric consistency among multitemporal satellite images. Diverse satellite images enhance the information for observing the Earth's surface and bring additional uncertainties in the applications using multisensor images, such as change detection, multitemporal analysis, and image fusion. To address this challenge, we developed a multirule-based RRN method for multisensor satellite images, which involves the identification of spectral- and spatial-invariant pseudo-invariant features (PIFs) and a partial least-squares (PLS) regression-based RRN modeling using neighboring target pixels around PIFs. The proposed RRN method was validated on four datasets and demonstrated excellent effectiveness in identifying high-quality PIFs with spectral- and spatial-invariant properties, estimating precise regression models, and enhancing the radiometric consistency of reference-target image pair. Our method outperformed six RRN methods and effectively processed well-registered medium- and high-resolution images from the same sensor. This letter highlights the potential of our method for generating more comparable bitemporal multisensor images.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Radiometric normalisation of multisensor/multitemporal satellite images with quality control for forest change detection
    Galiatsatos, Nikolaos
    Donoghue, Daniel N. M.
    Knox, Douglas
    Smith, Keir
    2007 INTERNATIONAL WORKSHOP ON THE ANALYSIS OF MULTI-TEMPORAL REMOTE SENSING IMAGES, 2007, : 253 - +
  • [22] Robust Radiometric Normalization of Multitemporal Satellite Images Via Block Adjustment Without Master Images
    Liu, Kunbo
    Ke, Tao
    Tao, Pengjie
    He, Jianan
    Xi, Ke
    Yang, Kaijun
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 6029 - 6043
  • [23] Radiometric Principle-Based Radiometric Normalization Method for SAR Images Mosaic
    Liu, Rui
    Wang, Feng
    Jiao, Niangang
    Yu, Wei
    You, Hongjian
    Liu, Fangjian
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [24] Radiometric normalization and cloud detection of optical satellite images using invariant pixels
    Lin, Chao-Hung
    Lin, Bo-Yi
    Lee, Kuan-Yi
    Chen, Yi-Chen
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2015, 106 : 107 - 117
  • [25] Radiometric Principle-Based Radiometric Normalization Method for SAR Images Mosaic
    Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing
    100094, China
    不详
    100190, China
    不详
    100049, China
    IEEE Geosci. Remote Sens. Lett., 2022,
  • [26] Improved relative radiometric normalization method of remote sensing images for change detection
    Chen, Yepei
    Sun, Kaimin
    Li, Deren
    Bai, Ting
    Li, Wenzhuo
    JOURNAL OF APPLIED REMOTE SENSING, 2018, 12 (04):
  • [28] Comparison of absolute and relative radiometric normalization use landsat time series images
    Hu, Yong
    Liu, Liangyun
    Liu, Lingling
    Jiao, Quanjun
    MIPPR 2011: REMOTE SENSING IMAGE PROCESSING, GEOGRAPHIC INFORMATION SYSTEMS, AND OTHER APPLICATIONS, 2011, 8006
  • [29] Relative radiometric normalization of remotely sensed images based on improved automatic scattergram-controlled regression
    Yu, Xiao-Min
    Chen, Yun-Hao
    Guangxue Jishu/Optical Technique, 2007, 33 (02): : 185 - 188
  • [30] Comparison of relative radiometric normalization techniques
    Desert Research Inst., Biological Sciences Centre, 755 E. Flamingo Road, Las Vegas NV 89119, United States
    ISPRS J Photogramm Remote Sensing, 3 (117-126):