A Fast 6DOF Visual Selective Grasping System Using Point Clouds

被引:0
|
作者
de Oliveira, Daniel Moura [1 ]
Conceicao, Andre Gustavo Scolari [2 ]
机构
[1] Univ Fed Bahia, Postgrad Program Elect Engn, BR-40210630 Salvador, Brazil
[2] Univ Fed Bahia, Dept Elect & Comp Engn, LaR Robot Lab, BR-40210630 Salvador, Brazil
关键词
robot manipulation; grasping system; AI in robotics; deep learning; point clouds;
D O I
10.3390/machines11050540
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Visual object grasping can be complex when dealing with different shapes, points of view, and environments since the robotic manipulator must estimate the most feasible place to grasp. This work proposes a new selective grasping system using only point clouds of objects. For the selection of the object of interest, a deep learning network for object classification is proposed, named Point Encoder Convolution (PEC). The network is trained with a dataset obtained in a realistic simulator and uses an autoencoder with 1D convolution. The developed grasping algorithm used in the system uses geometry primitives and lateral curvatures to estimate the best region to grasp without previously knowing the object's point cloud. Experimental results show a success ratio of 94% for a dataset with five classes, and the proposed visual selective grasping system can be executed in around 0.004 s, suitable for tasks that require a low execution time or use low-cost hardware.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Research on real time 6DOF robot localization based on visual and inertial fusion
    Zheng, Xinfang
    Guo, Yongxiang
    PROCEEDINGS OF THE 2017 5TH INTERNATIONAL CONFERENCE ON MACHINERY, MATERIALS AND COMPUTING TECHNOLOGY (ICMMCT 2017), 2017, 126 : 1392 - 1402
  • [42] FAST 6DOF POSE ESTIMATION WITH SYNTHETIC TEXTURELESS CAD MODEL FOR MOBILE APPLICATIONS
    Chen, Bowen
    Bae, Juhan
    Mukherjee, Dibyendu
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 2541 - 2545
  • [43] Nonlinear trajectory tracking with a 6DOF AUV using an MRAFC controller
    Fenco, Lugui
    Perez-Zuniga, Gustavo
    IEEE LATIN AMERICA TRANSACTIONS, 2025, 23 (02) : 160 - 171
  • [44] ViPR: Visual-Odometry-aided Pose Regression for 6DoF Camera Localization
    Ott, Felix
    Feigl, Tobias
    Loeffler, Christoffer
    Mutschler, Christopher
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 187 - 198
  • [45] 6DOF Iterative Closest Point Matching Considering A Priori with Maximum A Posteriori Estimation
    Hara, Yoshitaka
    Bando, Shigeru
    Tsubouchi, Takashi
    Oshima, Akira
    Kitahara, Itaru
    Kameda, Yoshinari
    2013 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2013, : 4172 - 4179
  • [46] The stability of breast cancer patients when using the 6DoF couch
    van der Himst, J.
    de la Fuente, A.
    Hoek, S.
    RADIOTHERAPY AND ONCOLOGY, 2022, 170 : S1636 - S1637
  • [47] A novel 6DoF pose estimation method using transformer fusion
    Wang, Huafeng
    Zhang, Haodu
    Liu, Wanquan
    Hu, Zhimin
    Gao, Haoqi
    Lv, Weifeng
    Gu, Xianfeng
    PATTERN RECOGNITION, 2025, 162
  • [48] PIONEERS: a 6DoF motion sensor to measure rotation and tides in the Solar System
    Valerio Filice
    Sébastien Le Maistre
    Véronique Dehant
    Tim Van Hoolst
    Felix Bernauer
    Raphaël F. Garcia
    Earth, Planets and Space, 76
  • [49] Fast and Automatic City-Scale Environment Modeling for an Accurate 6DOF Vehicle Localization
    Larnaout, Dorra
    Gay-Bellile, Vincent
    Bourgeois, Steve
    Labbe, Benjamin
    Dhome, Michel
    2013 IEEE INTERNATIONAL SYMPOSIUM ON MIXED AND AUGMENTED REALITY (ISMAR) - SCIENCE AND TECHNOLOGY, 2013, : 265 - +
  • [50] Investigation of in vivo 6DOF total knee arthoplasty kinematics using a dual orthogonal fluoroscopic system
    Hanson, GR
    Suggs, JF
    Freiberg, AA
    Durbhakula, S
    Li, GA
    JOURNAL OF ORTHOPAEDIC RESEARCH, 2006, 24 (05) : 974 - 981