IoMT-Enabled Real-Time Blood Glucose Prediction With Deep Learning and Edge Computing

被引:31
|
作者
Zhu, Taiyu [1 ]
Kuang, Lei [1 ]
Daniels, John [1 ]
Herrero, Pau [1 ]
Li, Kezhi [2 ]
Georgiou, Pantelis [1 ]
机构
[1] Imperial Coll London, Ctr Bioinspired Technol, London SW7 2BX, England
[2] UCL, Inst Hlth Informat, London WC1E 6BT, England
基金
英国工程与自然科学研究理事会;
关键词
Computational modeling; Wearable computers; Predictive models; Deep learning; Edge computing; Prediction algorithms; Performance evaluation; Artificial intelligence (AI); deep learning; diabetes; edge computing; glucose prediction; Internet of Things (IoT); ARTIFICIAL PANCREAS; SYSTEM; HYPOGLYCEMIA; INTERNET; THINGS; IOT;
D O I
10.1109/JIOT.2022.3143375
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Blood glucose (BG) prediction is essential to the success of glycemic control in type 1 diabetes (T1D) management. Empowered by the recent development of the Internet of Medical Things (IoMT), continuous glucose monitoring (CGM) and deep learning technologies have been demonstrated to achieve the state of the art in BG prediction. However, it is challenging to implement such algorithms in actual clinical settings to provide persistent decision support due to the high demand for computational resources, while smartphone-based implementations are limited by short battery life and require users to carry the device. In this work, we propose a new deep learning model using an attention-based evidential recurrent neural network and design an IoMT-enabled wearable device to implement the embedded model, which comprises a low-cost and low-power system on a chip to perform Bluetooth connectivity and edge computing for real-time BG prediction and predictive hypoglycemia detection. In addition, we developed a smartphone app to visualize BG trajectories and predictions, and desktop and cloud platforms to backup data and fine-tune models. The embedded model was evaluated on three clinical data sets including 47 T1D subjects. The proposed model achieved superior performance of root mean square error (RMSE), mean absolute error, and glucose-specific RMSE, and obtained the best accuracy for hypoglycemia detection when compared with a group of machine learning baseline methods. Moreover, we performed hardware-in-the-loop in silico trials with ten virtual T1D adults to test the whole IoMT system with predictive low-glucose management, which significantly reduced hypoglycemia and improved BG control.
引用
收藏
页码:3706 / 3719
页数:14
相关论文
共 50 条
  • [21] Deep Learning-Enabled Real-Time Recognition of Wireless Signals
    Gravelle, Christopher
    Morehouse, Todd
    Zhou, Ruolin
    2019 IEEE INTERNATIONAL SYMPOSIUM ON DYNAMIC SPECTRUM ACCESS NETWORKS (DYSPAN), 2019, : 445 - 446
  • [22] A Secured Real-Time IoMT Application for Monitoring Isolated COVID-19 Patients using Edge Computing
    Balasubramanian, Venki
    Arora, Teena
    Sulthana, Rehena
    Srinivasan, Ram
    Stranieri, Andrew
    Mahalakshmi, K.
    Manoharan, G.
    Menon, Varun G.
    2021 IEEE 20TH INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (TRUSTCOM 2021), 2021, : 1227 - 1234
  • [23] Learning IoV in Edge: Deep Reinforcement Learning for Edge Computing Enabled Vehicular Networks
    Xu, Shilin
    Guo, Caili
    Hu, Rose Qingyang
    Qian, Yi
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2021), 2021,
  • [24] Real-time relative permeability prediction using deep learning
    Arigbe, O. D.
    Oyeneyin, M. B.
    Arana, I.
    Ghazi, M. D.
    JOURNAL OF PETROLEUM EXPLORATION AND PRODUCTION TECHNOLOGY, 2019, 9 (02) : 1271 - 1284
  • [25] Real-time relative permeability prediction using deep learning
    O. D. Arigbe
    M. B. Oyeneyin
    I. Arana
    M. D. Ghazi
    Journal of Petroleum Exploration and Production Technology, 2019, 9 : 1271 - 1284
  • [26] Deep Learning Model for Real-Time Prediction of Intradialytic Hypotension
    Lee, Hojun
    Yun, Donghwan
    Yoo, Jayeon
    Yoo, Kiyoon
    Kim, Yong Chul
    Kim, Dong Ki
    Oh, Kook-Hwan
    Joo, Kwon Wook
    Kim, Yon Su
    Kwak, Nojun
    Han, Seung Seok
    CLINICAL JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2021, 16 (03): : 396 - 406
  • [27] Blood Glucose Prediction in Type 1 Diabetes Using Deep Learning on the Edge
    Zhu, Taiyu
    Kuang, Lei
    Li, Kezhi
    Zeng, Junming
    Herrero, Pau
    Georgiou, Pantelis
    2021 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2021,
  • [28] Real-time edge computing on multi-processes and multi-threading architectures for deep learning applications
    Lee, Shih Hsiung
    MICROPROCESSORS AND MICROSYSTEMS, 2022, 92
  • [29] Real-Time Mask Identification for COVID-19: An Edge-Computing-Based Deep Learning Framework
    Kong, Xiangjie
    Wang, Kailai
    Wang, Shupeng
    Wang, Xiaojie
    Jiang, Xin
    Guo, Yi
    Shen, Guojiang
    Chen, Xin
    Ni, Qichao
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (21): : 15929 - 15938
  • [30] Real-time monitoring and analysis of track and field athletes based on edge computing and deep reinforcement learning algorithm
    Tang, Xiaowei
    Long, Bin
    Zhou, Li
    Alexandria Engineering Journal, 2025, 114 : 136 - 146