Gate-tunable spin valve effect in Fe3GeTe2-based van der Waals heterostructures

被引:28
|
作者
Zhou, Ling
Huang, Junwei
Tang, Ming
Qiu, Caiyu
Qin, Feng
Zhang, Caorong
Li, Zeya
Wu, Di
Yuan, Hongtao [1 ,2 ]
机构
[1] Nanjing Univ, Natl Lab Solid State Microstruct, Jiangsu Key Lab Artificial Funct Mat, Coll Engn & Appl Sci, Nanjing 210000, Peoples R China
[2] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210000, Peoples R China
基金
中国国家自然科学基金;
关键词
Fe3GeTe2; magnetic tunnel junction; magnetoresistance; spin valve; van der Waals heterostructure; RANDOM-ACCESS MEMORY; GIANT MAGNETORESISTANCE; TEMPERATURE-DEPENDENCE; TUNNEL; GRAPHENE; FERROMAGNETISM; MAGNETIZATION; SPINTRONICS;
D O I
10.1002/inf2.12371
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Magnetic tunnel junctions (MTJs), a prominent type of spintronic device based on the spin valve effect, have facilitated the development of numerous spintronic applications. The technical appeal for the next-generation MTJ devices has been proposed in two directions: improving device performance by utilizing advanced two-dimensional (2D) ferromagnetic materials or extending device functionalities by exploring the gate-tunable magnetic properties of ferromagnets. Based on the recent development of 2D magnets with the ease of external stimuli, such as electric field, due to their reduced dimensions, reliable prospects for gate-tunable MTJ devices can be achieved, shedding light on the great potential of next-generation MTJs with multiple functionalities for various application environments. While the electrical gate-tunable MTJ device is highly desirable for practical spintronic devices, it has not yet been demonstrated. Here, we demonstrate the experimental realization of a spin valve device by combining a vertical Fe3GeTe2/h-BN/Fe3GeTe2 MTJ with an electrolyte gate. The magnetoresistance ratio (MR ratio) of 36% for the intrinsic MTJ confirms the good performance of the device. By electrolyte gating, the tunneling MR ratio of Fe3GeTe2/h-BN/Fe3GeTe2 MTJ can be elevated 2.5 times, from 26% to 65%. Importantly, the magnetic fields at which the magnetoresistance switches for the MTJ can be modulated by electrical gating, providing a promising method to control the magnetization configuration of the MTJ. Our work demonstrates a gate-tunable MTJ device toward the possibility for gate-controlled spintronic devices, paving the way for performing 2D magnetism manipulations and exploring innovative spintronic applications.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Gate-tunable van der Waals heterostructure for reconfigurable neural network vision sensor
    Wang, Chen-Yu
    Liang, Shi-Jun
    Wang, Shuang
    Wang, Pengfei
    Li, Zhu'an
    Wang, Zhongrui
    Gao, Anyuan
    Pan, Chen
    Liu, Chuan
    Liu, Jian
    Yang, Huafeng
    Liu, Xiaowei
    Song, Wenhao
    Wang, Cong
    Wang, Xiaomu
    Chen, Kunji
    Wang, Zhenlin
    Watanabe, Kenji
    Taniguchi, Takashi
    Yang, J. Joshua
    Miao, Feng
    Cheng, Bin
    SCIENCE ADVANCES, 2020, 6 (26)
  • [42] Gate-tunable giant tunneling electroresistance in van der Waals ferroelectric tunneling junctions
    Wang, Qinqin
    Xie, Ti
    Blumenschein, Nicholas A.
    Song, Zhihao
    Hanbicki, Aubrey T.
    Susner, Michael A.
    Conner, Benjamin S.
    Low, Tony
    Wang, Jian-Ping
    Friedman, Adam L.
    Gong, Cheng
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2022, 283
  • [43] Gate-Tunable and Multidirection-Switchable Memristive Phenomena in a Van Der Waals Ferroelectric
    Xue, Fei
    He, Xin
    Retamal, Jose Ramon Duran
    Han, Ali
    Zhang, Junwei
    Liu, Zhixiong
    Huang, Jing-Kai
    Hu, Weijin
    Tung, Vincent
    He, Jr-Hou
    Li, Lain-Jong
    Zhang, Xixiang
    ADVANCED MATERIALS, 2019, 31 (29)
  • [44] Gate-Tunable Semiconductor Heterojunctions from 2D/3D van der Waals Interfaces
    Miao, Jinshui
    Liu, Xiwen
    Jo, Kiyoung
    He, Kang
    Saxena, Ravindra
    Song, Baokun
    Zhang, Huiqin
    He, Jiale
    Han, Myung-Geun
    Hu, Weida
    Jariwala, Deep
    NANO LETTERS, 2020, 20 (04) : 2907 - 2915
  • [45] Exchange Bias in Molecule/Fe3GeTe2 van der Waals Heterostructures via Spinterface Effects
    Jo, Junhyeon
    Calavalle, Francesco
    Martin-Garcia, Beatriz
    Tezze, Daniel
    Casanova, Felix
    Chuvilin, Andrey
    Hueso, Luis E.
    Gobbi, Marco
    ADVANCED MATERIALS, 2022, 34 (21)
  • [46] Gate-Tunable Photodiodes Based on Mixed-Dimensional Te/MoTe2 Van der Waals Heterojunctions
    Zhao, Dongyang
    Chen, Yan
    Jiang, Wei
    Wang, Xudong
    Liu, Jingjing
    Huang, Xinning
    Han, Sancan
    Lin, Tie
    Shen, Hong
    Wang, Xianying
    Hu, Weida
    Meng, Xiangjian
    Chu, Junhao
    Wang, Jianlu
    ADVANCED ELECTRONIC MATERIALS, 2021, 7 (05)
  • [47] Interfacial magnetic spin Hall effect in van der Waals Fe3GeTe2/MoTe2 heterostructure
    Yudi Dai
    Junlin Xiong
    Yanfeng Ge
    Bin Cheng
    Lizheng Wang
    Pengfei Wang
    Zenglin Liu
    Shengnan Yan
    Cuiwei Zhang
    Xianghan Xu
    Youguo Shi
    Sang-Wook Cheong
    Cong Xiao
    Shengyuan A. Yang
    Shi-Jun Liang
    Feng Miao
    Nature Communications, 15
  • [48] Interfacial magnetic spin Hall effect in van der Waals Fe3GeTe2/MoTe2 heterostructure
    Dai, Yudi
    Xiong, Junlin
    Ge, Yanfeng
    Cheng, Bin
    Wang, Lizheng
    Wang, Pengfei
    Liu, Zenglin
    Yan, Shengnan
    Zhang, Cuiwei
    Xu, Xianghan
    Shi, Youguo
    Cheong, Sang-Wook
    Xiao, Cong
    Yang, Shengyuan A.
    Liang, Shi-Jun
    Miao, Feng
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [49] Large Anomalous Nernst Effect in a van der Waals Ferromagnet Fe3GeTe2
    Xu, Jinsong
    Phelan, W. Adam
    Chien, Chia-Ling
    NANO LETTERS, 2019, 19 (11) : 8250 - 8254
  • [50] Gate-Tuned Interlayer Coupling in van der Waals Ferromagnet Fe3GeTe2 Nanoflakes
    Zheng, Guolin
    Xie, Wen-Qiang
    Albarakati, Sultan
    Algarni, Meri
    Tan, Cheng
    Wang, Yihao
    Peng, Jingyang
    Partridge, James
    Farrar, Lawrence
    Yi, Jiabao
    Xiong, Yimin
    Tian, Mingliang
    Zhao, Yu-Jun
    Wang, Lan
    PHYSICAL REVIEW LETTERS, 2020, 125 (04)