A formula for gap between K-relatively bounded operator matrices in non-Archimedean Banach spaces

被引:0
|
作者
Ammar, Aymen [1 ]
Lazrag, Nawrez [1 ]
机构
[1] Univ Sfax, Fac Sci Sfax, Dept Math, Soukra Rd Km 3-5,BP 1171, Sfax 3000, Tunisia
关键词
Non-Archimedean Banach space; K-relatively; Matrix of linear operator; Gap; Generalized convergence;
D O I
10.1007/s12215-022-00807-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
To study the notion of gap between two operator matrices on non-Archimedean Banach spaces, it is natural to take stability of closedness for these matrices into account due to the definitions of K-diagonally dominant and off-K-diagonally dominant operator matrices. So, we shall study this problem in the present paper. Furthermore, under sufficient conditions, we give a counterpart of the generalized convergence for a operator matrix.
引用
收藏
页码:2469 / 2497
页数:29
相关论文
共 50 条
  • [31] Commutators on Banach spaces over non-Archimedean fields
    Wiesław Śliwa
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [32] Non-Archimedean Hahn-Banach theorems and injective Banach spaces
    Gonzalez, M.
    Perez-Garcia, C.
    ADVANCES IN ULTRAMETRIC ANALYSIS, 2018, 704 : 231 - 249
  • [33] ON SPACES OF COMPACT-OPERATORS IN NON-ARCHIMEDEAN BANACH-SPACES
    KIYOSAWA, T
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1989, 32 (04): : 450 - 458
  • [34] CAUCHY-JENSEN FUNCTIONAL INEQUALITY IN BANACH SPACES AND NON-ARCHIMEDEAN BANACH SPACES
    Chang, Ick-Soon
    Gordji, M. Eshaghi
    Kim, Hark-Mahn
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2012, 14 (07) : 1237 - 1247
  • [35] Orthonormal bases for non-archimedean Banach spaces of continuous functions
    Verdoodt, A
    P-ADIC FUNCTIONAL ANALYSIS, 1999, 207 : 323 - 331
  • [36] On Countable Tightness and the Lindelof Property in Non-Archimedean Banach Spaces
    Kakol, Jerzy
    Kubzdela, Albert
    Perez-Garcia, Cristina
    JOURNAL OF CONVEX ANALYSIS, 2018, 25 (01) : 181 - 199
  • [37] On the weak topology of Banach spaces over non-archimedean fields
    Kakol, Jerzy
    Sliwa, Wieslaw
    TOPOLOGY AND ITS APPLICATIONS, 2011, 158 (09) : 1131 - 1135
  • [38] Quasi-invariant measures on non-Archimedean Banach spaces
    Lyudkovskii, SV
    RUSSIAN MATHEMATICAL SURVEYS, 2003, 58 (02) : 377 - 378
  • [39] The finite-dimensional decomposition property in non-Archimedean Banach spaces
    Albert Kubzdela
    Cristina Perez-Garcia
    Acta Mathematica Sinica, English Series, 2014, 30 : 1833 - 1845
  • [40] The Finite-dimensional Decomposition Property in Non-Archimedean Banach Spaces
    Albert KUBZDELA
    Cristina PEREZ-GARCIA
    ActaMathematicaSinica(EnglishSeries), 2014, 30 (11) : 1833 - 1845