Dopant engineering for ZnO electron transport layer towards efficient perovskite solar cells

被引:17
|
作者
Abidin, Nurul Aliyah Zainal [1 ]
Arith, Faiz [1 ]
Noorasid, N. Syamimi [1 ]
Sarkawi, Hafez [2 ]
Mustafa, A. Nizamuddin [2 ,3 ]
Safie, N. E. [2 ]
Shah, A. S. Mohd [4 ]
Azam, M. A. [5 ,6 ]
Chelvanathan, Puvaneswaran [7 ]
Amin, Nowshad [8 ]
机构
[1] Univ Teknikal Malaysia Melaka, Fac Elect & Comp Engn, Hang Tuah Jaya 76100, Durian Tunggal, Malaysia
[2] Univ Teknikal Malaysia Melaka, Fac Elect & Elect Engn Technol, Durian Tunggal 76100, Melaka, Malaysia
[3] Imperial Coll London, Fac Engn, Dept Mat, London SW7 2AZ, England
[4] Univ Malaysia Pahang, Coll Engn, Dept Elect Engn, Lebuhraya Tun Razak, Kuantan 26300, Pahang, Malaysia
[5] Univ Teknikal Malaysia Melaka, Fac Mfg Engn, Durian Tunggal, Melaka, Malaysia
[6] Shibaura Inst Technol, Ctr Promot Educ Innovat, 3-7-5 Toyosu,Koto Ku, Tokyo 1358548, Japan
[7] Natl Univ Malaysia, Solar Energy Res Inst, Bangi 43600, Selangor, Malaysia
[8] Univ Sci & Technol Chittagong USTC, Dept Elect & Elect Engn, Foys Lake 4202, Chittagong, Bangladesh
关键词
LA-DOPED ZNO; OXIDE THIN-FILM; ZINC-OXIDE; PHOTOVOLTAIC PERFORMANCE; CONTROLLABLE SYNTHESIS; HIGHLY EFFICIENT; TIO2; HETEROJUNCTION; BASNO3; NANOPARTICLES;
D O I
10.1039/d3ra04823c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The conventional electron transport layer (ETL) TiO2 has been widely used in perovskite solar cells (PSCs), which have produced exceptional power conversion efficiencies (PCE), allowing the technology to be highly regarded and propitious. Nevertheless, the recent high demand for energy harvesters in wearable electronics, aerospace, and building integration has led to the need for flexible solar cells. However, the conventional TiO2 ETL layer is less preferred, where a crystallization process at a temperature as high as 450 degrees C is required, which degrades the plastic substrate. Zinc oxide nanorods (ZnO NRs) as a simple and low-cost fabrication material may fulfil the need as an ETL, but they still suffer from low PCE due to atomic defect vacancy. To delve into the issue, several dopants have been reviewed as an additive to passivate or substitute the Zn2+ vacancies, thus enhancing the charge transport mechanism. This work thereby unravels and provides a clear insight into dopant engineering in ZnO NRs ETL for PSC. Dopant engineering of lanthanum (La) on zinc oxide (ZnO) electron transport layer for perovskite solar cell application.
引用
收藏
页码:33797 / 33819
页数:23
相关论文
共 50 条
  • [31] Hybrid Mesoporous TiO2/ZnO Electron Transport Layer for Efficient Perovskite Solar Cell
    Drygala, Aleksandra
    Starowicz, Zbigniew
    Gawlinska-Necek, Katarzyna
    Karolus, Malgorzata
    Lipinski, Marek
    Jarka, Pawel
    Matysiak, Wiktor
    Tillova, Eva
    Palcek, Peter
    Tanski, Tomasz
    MOLECULES, 2023, 28 (15):
  • [32] Ionic liquid dopant for hole transporting layer towards efficient LiTFSI-free perovskite solar cells
    Zhu, Hao
    Mo, Yanping
    Wang, Chao
    Li, Jing
    Tian, Congcong
    Wen, Yongtao
    Lin, Zhipeng
    Yu, Guomu
    Wang, Luqi
    Hou, Peiran
    Zhang, Xiao-Li
    Li, Wei
    Cheng, Yi-Bing
    Huang, Fuzhi
    CHEMICAL PHYSICS LETTERS, 2022, 801
  • [33] Charge-transport layer engineering in perovskite solar cells
    Cheng, Ming
    Zuo, Chuantian
    Wu, Yongzhen
    Li, Zhongan
    Xu, Baomin
    Hua, Yong
    Ding, Liming
    SCIENCE BULLETIN, 2020, 65 (15) : 1237 - 1241
  • [34] Efficient, Hysteresis-Free, and Stable Perovskite Solar Cells with ZnO as Electron-Transport Layer: Effect of Surface Passivation
    Cao, Jing
    Wu, Binghui
    Chen, Ruihao
    Wu, Youyunqi
    Hui, Yong
    Mao, Bing-Wei
    Zheng, Nanfeng
    ADVANCED MATERIALS, 2018, 30 (11)
  • [35] Interfacial Modification of Sol-Gel ZnO/AZO Bilayer as Highly Efficient Electron Transport Layer for Perovskite Solar Cells
    Wu, Shang-Hsuan
    Lin, Ming-Yi
    Chang, Sheng-Hao
    Tu, Wei-Chen
    Chu, Chi-Wei
    Chang, Yia-Chung
    2017 IEEE 44TH PHOTOVOLTAIC SPECIALIST CONFERENCE (PVSC), 2017, : 1051 - 1054
  • [36] Precursor Engineering of the Electron Transport Layer for Application in High-Performance Perovskite Solar Cells
    Lin, Zhichao
    Zhang, Wenqi
    Cai, Qingbin
    Xu, Xiangning
    Dong, Hongye
    Mu, Cheng
    Zhang, Jian-Ping
    ADVANCED SCIENCE, 2021, 8 (22)
  • [37] Research progress in electron transport layer in perovskite solar cells
    Gong-Ping Mao
    Wei Wang
    Sen Shao
    Xiao-Jun Sun
    Shi-An Chen
    Min-Hao Li
    Hua-Ming Li
    Rare Metals, 2018, 37 : 95 - 106
  • [38] Research progress in electron transport layer in perovskite solar cells
    Gong-Ping Mao
    Wei Wang
    Sen Shao
    Xiao-Jun Sun
    Shi-An Chen
    Min-Hao Li
    Hua-Ming Li
    RareMetals, 2018, 37 (02) : 95 - 106
  • [39] Research progress in electron transport layer in perovskite solar cells
    Mao, Gong-Ping
    Wang, Wei
    Shao, Sen
    Sun, Xiao-Jun
    Chen, Shi-An
    Li, Min-Hao
    Li, Hua-Ming
    RARE METALS, 2018, 37 (02) : 95 - 106
  • [40] Facile Surface Engineering of Composite Electron Transport Layer for Highly Efficient Perovskite Solar Cells with a Fill Factor Exceeding 81%
    Zong, Beibei
    Deng, Jianguo
    Sun, Qing
    Zhang, Zizhao
    Meng, Xiangxin
    Shen, Bo
    Kang, Bonan
    Silva, S. Ravi P.
    Lu, Geyu
    ADVANCED MATERIALS INTERFACES, 2022, 9 (06)