SAFPN: a full semantic feature pyramid network for object detection

被引:0
|
作者
Wang, Gaihua [1 ,2 ]
Li, Qi [1 ]
Wang, Nengyuan [1 ]
Liu, Hong [1 ]
机构
[1] Hubei Univ Technol, Sch Elect & Elect Engn, Wuhan 430068, Peoples R China
[2] Hubei Univ Technol, Hubei Key Lab High efficiency Utilizat Solar Energ, Wuhan 430068, Peoples R China
关键词
FPN; Segmentation and accumulation; Channel attention; Spatial attention; ATTENTION;
D O I
10.1007/s10044-023-01200-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To enhance the performance of object detection algorithm, this paper proposes segmentation attention feature pyramid network (SAFPN) to address the issue of semantic information loss. Compared to prior works, SAFPN discards the original 1 x 1 convolutions and achieves feature dimension reduction through a segmentation and accumulation architecture, thereby preserving the semantic information of high-dimensional features completely. To capture fine-grained semantic details, it integrates channel attention and spatial attention mechanisms to enhance the network's focus on important information. Extensive experimental validation demonstrates that SAFPN achieves favorable results on multiple public datasets, and can better complete the target detection task.
引用
收藏
页码:1729 / 1739
页数:11
相关论文
共 50 条
  • [41] Multi-level feature fusion pyramid network for object detection
    Zebin Guo
    Hui Shuai
    Guangcan Liu
    Yisheng Zhu
    Wenqing Wang
    The Visual Computer, 2023, 39 : 4267 - 4277
  • [42] Discriminative Feature Pyramid Network For Object Detection In Remote Sensing Images
    Zhu, Xiaoqian
    Zhang, Xiangrong
    Zhang, Tianyang
    Zhu, Peng
    Tang, Xu
    Li, Chen
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [43] Dual-bottleneck feature pyramid network for multiscale object detection
    Chen, Suting
    Ma, Wenyan
    Zhang, Liangchen
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (01)
  • [44] Weighted Feature Pyramid Network for One-Stage Object Detection
    Tu, Xiaobo
    Zhan, Yongzhao
    IMAGE AND GRAPHICS, ICIG 2019, PT I, 2019, 11901 : 606 - 617
  • [45] Cross-Layer Feature Pyramid Network for Salient Object Detection
    Li, Zun
    Lang, Congyan
    Liew, Jun Hao
    Li, Yidong
    Hou, Qibin
    Feng, Jiashi
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 4587 - 4598
  • [46] FI-FPN: Feature-integration feature pyramid network for object detection
    Su, Qichen
    Zhang, Guangjian
    Wu, Shuang
    Yin, Yiming
    AI COMMUNICATIONS, 2023, 36 (03) : 191 - 203
  • [47] RSANet: Towards Real-Time Object Detection with Residual Semantic-Guided Attention Feature Pyramid Network
    Zhou, Quan
    Wang, Jie
    Liu, Jia
    Li, Shenghua
    Ou, Weihua
    Jin, Xin
    MOBILE NETWORKS & APPLICATIONS, 2021, 26 (01): : 77 - 87
  • [48] Enhanced Feature Pyramid Network for Semantic Segmentation
    Ye, Mucong
    Ouyang, Jingpeng
    Chen, Ge
    Zhang, Jing
    Yu, Xiaogang
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 3209 - 3216
  • [49] RSANet: Towards Real-Time Object Detection with Residual Semantic-Guided Attention Feature Pyramid Network
    Quan Zhou
    Jie Wang
    Jia Liu
    Shenghua Li
    Weihua Ou
    Xin Jin
    Mobile Networks and Applications, 2021, 26 : 77 - 87
  • [50] Semantic Guided Feature Aggregation Network for Salient Object Detection
    Wang Z.-W.
    Song H.-H.
    Fan J.-Q.
    Liu Q.-S.
    Zidonghua Xuebao/Acta Automatica Sinica, 2023, 49 (11): : 2386 - 2395