A novel method for solidification/stabilization of MSWI fly ash by graphene nanoplatelets synergistic alkali-activated technology

被引:23
|
作者
Li, Tianru [1 ]
Wang, Baomin [1 ,3 ]
Zhang, Xiong [1 ]
Han, Xiao [1 ]
Xing, Yunqing [1 ]
Fan, Chengcheng [1 ]
Liu, Ze [2 ]
机构
[1] Dalian Univ Technol, Sch Civil Engn, Dalian 116024, Liaoning, Peoples R China
[2] China Univ Min & Technol, Sch Chem & Environm Engn, Beijing 100083, Peoples R China
[3] 2 Lingong Rd, Dalian City, Liaoning Provin, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Graphene nanoplatelets; MSWI fly ash; Alkali-activated technology; Heavy metal; Solidification; stabilization; HEAVY-METALS; GEOPOLYMER MATERIALS; SOLID-WASTES; RED MUD; INCINERATION; IMMOBILIZATION; SPECIATION; CHEMISTRY; HYDRATION;
D O I
10.1016/j.jece.2023.110589
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Municipal solid waste incineration (MSWI) fly ash with considerable heavy metals needs to be safely disposed of before landfill. In this study, graphene nanoplatelets (GNPs)/MSWI fly ash solidified body was prepared by alkali-activated technology, in order to improve the solidification ability of heavy metals and maximize the utilization of MSWI fly ash to cope with the scarcity of landfill. This paper studied the effect and mechanism of GNPs on heavy metal leaching characteristics. Results showed that solidified body with adding 0.05 wt% GNPs exhibited the highest compressive strength and the lowest heavy metals leaching concentration. Adding GNPs promoted heavy metals in solidified body to be converted into the residual state. Meanwhile, the microstructure and morphology characteristic analysis results indicated that GNPs promoted C-(A)-S-H gels formation. There were various kinds of solidification/stabilization (S/S) mechanisms including physical adsorption, physical encapsulation and chemical bonding in GNPs/MSWI fly ash solidified bodies. This study paves a potential new way for the application of nanomaterials in S/S MSWI fly ash through alkali-activated technology, and graphene is a more promising additive.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Stabilization of Aeolian Sand for Pavement Subbase Applications Using Alkali-Activated Fly Ash and Slag
    Bai, Likang
    Yang, Zhenjia
    Wu, Yang
    Anbarlouie, Mohadeseh
    Pan, Zhu
    MINERALS, 2023, 13 (03)
  • [42] Influence of NaOH content on the alkali conversion mechanism in MSWI bottom ash alkali-activated mortars
    Huang, Guodong
    Yang, Ke
    Sun, Yuhua
    Lu, Zeyang
    Zhang, Xingyu
    Zuo, Lin
    Feng, Yongqi
    Qian, Ruochun
    Qi, Yue
    Ji, Yongsheng
    Xu, Zhishan
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 248
  • [43] Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements
    Shi, Caijun
    Fernandez-Jimenez, A.
    JOURNAL OF HAZARDOUS MATERIALS, 2006, 137 (03) : 1656 - 1663
  • [44] Microanalysis of alkali-activated fly ash-CH pastes
    Williams, PJ
    Biernacki, JJ
    Walker, LR
    Meyer, HM
    Rawn, CJ
    Bai, JM
    CEMENT AND CONCRETE RESEARCH, 2002, 32 (06) : 963 - 972
  • [45] Development of Cementless Fly Ash Based Alkali-Activated Mortar
    Koh, Kyung-Taek
    Kang, Su-Tae
    Ryu, Gum-Sung
    Kang, Hyun-Jin
    Lee, Jang-Hwa
    ADVANCES IN FRACTURE AND DAMAGE MECHANICS VIII, 2010, 417-418 : 721 - 724
  • [46] Novel one-part fly ash alkali-activated cements for ambient applications
    Tarique, Oscar
    Kovtun, Maxim
    ADVANCES IN CEMENT RESEARCH, 2022, 34 (10) : 458 - 471
  • [47] Properties of alkali-activated fly ash: high performance to lightweight
    Brooks, Robert
    Bahadory, Mozhgan
    Tovia, Fernando
    Rostami, Hossein
    INTERNATIONAL JOURNAL OF SUSTAINABLE ENGINEERING, 2010, 3 (03) : 211 - 218
  • [48] Behavior of Alkali-Activated Fly Ash through Underwater Placement
    Yahya, Zarina
    Abdullah, Mohd Mustafa Al Bakri
    Li, Long-yuan
    Burduhos Nergis, Dumitru Doru
    Hakimi, Muhammad Aiman Asyraf Zainal
    Sandu, Andrei Victor
    Vizureanu, Petrica
    Razak, Rafiza Abd
    MATERIALS, 2021, 14 (22)
  • [49] Properties of alkali-activated fly ash/slag repair mortars
    Ghafoori, N.
    Najimi, M.
    CONCRETE SOLUTIONS: PROCEEDINGS OF CONCRETE SOLUTIONS, 5TH INTERNATIONAL CONFERENCE ON CONCRETE REPAIR, 2014, : 77 - 81
  • [50] Chloride binding of alkali-activated slag/fly ash cements
    Zhang, Jian
    Shi, Caijun
    Zhang, Zuhua
    CONSTRUCTION AND BUILDING MATERIALS, 2019, 226 : 21 - 31