Shadow Distillation: Quantum Error Mitigation with Classical Shadows for Near-Term Quantum Processors

被引:27
|
作者
Seif, Alireza [1 ]
Cian, Ze-Pei [2 ,3 ,4 ]
Zhou, Sisi [1 ,5 ]
Chen, Senrui [1 ]
Jiang, Liang [1 ]
机构
[1] Univ Chicago, Pritzker Sch Mol Engn, Chicago, IL 60637 USA
[2] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[3] Univ Maryland, Joint Quantum Inst, College Pk, MD 20742 USA
[4] Univ Maryland, Ctr Quantum Informat & Comp Sci, College Pk, MD 20742 USA
[5] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
来源
PRX QUANTUM | 2023年 / 4卷 / 01期
关键词
All Open Access; Gold;
D O I
10.1103/PRXQuantum.4.010303
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Mitigating errors in quantum information processing devices is especially important in the absence of fault tolerance. An effective method in suppressing state-preparation errors is using multiple copies to distill the ideal component from a noisy quantum state. Here, we use classical shadows and random-ized measurements to circumvent the need for coherent access to multiple copies at an exponential cost. We study the scaling of resources using numerical simulations and find that the overhead is still favor-able compared to full state tomography. We optimize measurement resources under realistic experimental constraints and apply our method to an experiment preparing a Greenberger-Horne-Zeilinger state with trapped ions. In addition to improving stabilizer measurements, the analysis of the improved results reveals the nature of errors affecting the experiment. Hence, our results provide a directly applicable method for mitigating errors in near-term quantum computers.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Algorithmic Error Mitigation Scheme for Current Quantum Processors
    Suchsland, Philippe
    Tacchino, Francesco
    Fischer, Mark H.
    Neupert, Titus
    Barkoutsos, Panagiotis Kl.
    Tavernelli, Ivano
    QUANTUM, 2021, 5
  • [32] Quantum Natural Language Processing on Near-Term Quantum Computers
    Meichanetzidis, K.
    De Felice, G.
    Toumi, A.
    Coecke, B.
    Gogioso, S.
    Chiappori, N.
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2021, (340): : 213 - 229
  • [33] Training quantum embedding kernels on near-term quantum computers
    Hubregtsen, Thomas
    Wierichs, David
    Gil-Fuster, Elies
    Derks, Peter-Jan H. S.
    Faehrmann, Paul K.
    Meyer, Johannes Jakob
    PHYSICAL REVIEW A, 2022, 106 (04)
  • [34] Towards near-term quantum simulation of materials
    Laura Clinton
    Toby Cubitt
    Brian Flynn
    Filippo Maria Gambetta
    Joel Klassen
    Ashley Montanaro
    Stephen Piddock
    Raul A. Santos
    Evan Sheridan
    Nature Communications, 15
  • [35] Towards near-term quantum simulation of materials
    Clinton, Laura
    Cubitt, Toby
    Flynn, Brian
    Gambetta, Filippo Maria
    Klassen, Joel
    Montanaro, Ashley
    Piddock, Stephen
    Santos, Raul A.
    Sheridan, Evan
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [36] Characterizing quantum supremacy in near-term devices
    Boixo, Sergio
    Isakov, Sergei, V
    Smelyanskiy, Vadim N.
    Babbush, Ryan
    Ding, Nan
    Jiang, Zhang
    Bremner, Michael J.
    Martinis, John M.
    Neven, Hartmut
    NATURE PHYSICS, 2018, 14 (06) : 595 - 600
  • [37] Readout rebalancing for near-term quantum computers
    Hicks, Rebecca
    Bauer, Christian W.
    Nachman, Benjamin
    PHYSICAL REVIEW A, 2021, 103 (02)
  • [38] Characterizing quantum supremacy in near-term devices
    Sergio Boixo
    Sergei V. Isakov
    Vadim N. Smelyanskiy
    Ryan Babbush
    Nan Ding
    Zhang Jiang
    Michael J. Bremner
    John M. Martinis
    Hartmut Neven
    Nature Physics, 2018, 14 : 595 - 600
  • [39] Faithfully Simulating Near-Term Quantum Repeaters
    Wallnoefer, Julius
    Hahn, Frederik
    Wiesner, Fabian
    Walk, Nathan
    Eisert, Jens
    PRX QUANTUM, 2024, 5 (01):
  • [40] Recycling qubits in near-term quantum computers
    Anikeeva, Galit
    Kim, Isaac H.
    Hayden, Patrick
    PHYSICAL REVIEW A, 2021, 103 (04)