A general logarithmic asymptotic behavior for partial sums of i.i.d. random variables

被引:0
|
作者
Miao, Yu [1 ]
Li, Deli [2 ]
机构
[1] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang, Henan, Peoples R China
[2] Lakehead Univ, Dept Math Sci, Thunder Bay, ON, Canada
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
Large deviations; Laws of large numbers; Logarithmic asymptotic behaviors; Sums of i.i.d. random variables; ITERATED LOGARITHM; LAW;
D O I
10.1016/j.spl.2024.110043
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let 0 < p < 2 and theta > 0. Let {X, X-n; n >= 1} be a sequence of independent and identically distributed B-valued random variables and set S-n = Sigma(n)(i=1) X-t, n >= 1. In this note, a general logarithmic asymptotic behavior for {S-n; n >= 1} is established. We show that if S-n/n(1/p) ->(P) 0, then, for all s > 0, {lim(n ->infinity) sup log P (parallel to S-n parallel to > sn(1/p)) /(log n)(theta) = -p(-theta)(zeta) over bar (p, theta), lim(n ->infinity) inf log P (parallel to S-n parallel to > sn(1/p)) /(log n)(theta) = -p(-theta)(zeta) under bar (p, theta), where (zeta) over bar (p, theta) = - lim(t ->infinity) sup log (e(pt)P(log parallel to X parallel to > t))/t(theta) and (zeta) under bar (p, theta) = -lim(t ->infinity) inf log (e(pt)P(log parallel to X parallel to > t))/t(theta). The main tools used to prove this result are the symmetrization technique, an auxiliary lemma for the maximum of i.i.d. random variables, a moment inequality, and an exponential inequality.
引用
收藏
页数:11
相关论文
共 50 条