Cheese-like Ti3C2 for enhanced hydrogen storage

被引:13
|
作者
Gu, Chen [1 ]
Gao, Hai-Guang [2 ,3 ,4 ]
Tana, Peng [1 ]
Liu, Ya-Na [2 ,3 ]
Liu, Xiao-Qin [1 ]
Hu, Xiao-Hui [2 ,3 ]
Zhu, Yun-Feng [2 ,3 ]
Sun, Lin-Bing [1 ]
机构
[1] Nanjing Tech Univ, Coll Chem Engn, Jiangsu Natl Synerget Innovat Ctr Adv Mat SICAM, State Key Lab Mat Oriented Chem Engn, Nanjing 211816, Peoples R China
[2] Nanjing Tech Univ, Coll Mat Sci & Engn, Nanjing 211816, Peoples R China
[3] Nanjing Tech Univ, Jiangsu Collaborat Innovat Ctr Adv Inorgan Funct C, Nanjing 211816, Peoples R China
[4] Changzhou Univ, Sch Petrochem Engn, Changzhou 213164, Peoples R China
基金
中国国家自然科学基金;
关键词
Ti; 3; C; 2; MXenes; Hydrogen storage; Edge active sites; MgH2; CATALYTIC-ACTIVITY; MXENE; DEHYDROGENATION; REDUCTION; EVOLUTION; MOS2;
D O I
10.1016/j.cej.2023.145462
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
MXenes are highly promising in efficient Mg-based hydrogen storage but their activity is insufficient due to the low efficiency of active sites. Here, for the first time, we propose a facile oxidation-etching-oxidation strategy to expose and optimize abundant internal active sites in a typical MXene (Ti3C2), avoiding additional introduction of active metal sites or complex structural optimization. The obtained cheese-like Ti3C2 with Ti/TiO2 activity sites enriched at the edge of through holes exhibits much better performance in terms of dehydrogenation temperature (from 190 & DEG;C) as well as rate in initial 10 min at 250 & DEG;C (0.37 wt%/min) than ordinary Ti3C2 when applied in Mg-based hydrogen storage. Compared to ordinary Ti3C2, the dehydrogenation temperature is 60 & DEG;C decreased and rate increases to 2-fold, respectively. This work elucidates that significantly enhanced hydrogen storage performance of MXenes can be realized by exposing abundant internal edge active sites via a facile oxidation-etching-oxidation strategy.
引用
下载
收藏
页数:9
相关论文
共 50 条
  • [21] Ti3C2 MXene derived (001)TiO2/Ti3C2 heterojunctions for enhanced visible-light photocatalytic degradation of tetracycline
    Qiang, Wei
    Qu, Xiao
    Chen, Chuntao
    Zhang, Lei
    Sun, Dongping
    MATERIALS TODAY COMMUNICATIONS, 2022, 33
  • [22] Highly safe and ionothermal synthesis of Ti3C2 MXene with expanded interlayer spacing for enhanced lithium storage
    Junbiao Wu
    Yu Wang
    Yaopeng Zhang
    Hao Meng
    Yan Xu
    Yide Han
    Zhuopeng Wang
    Yanfeng Dong
    Xia Zhang
    Journal of Energy Chemistry, 2020, 47 (08) : 203 - 209
  • [23] Highly Enhanced Photocatalytic Hydrogen Production Performance of Heterostructured Ti3C2/TiO2/rGO Composites
    Miao, Baoji
    Zhang, Yonghui
    Chen, Qiuling
    Zhang, YiFan
    Cao, Yange
    Bai, Zhiming
    Chen, Lei
    LANGMUIR, 2022, 38 (50) : 15579 - 15591
  • [24] 2D-layered Ti3C2/TiO2 hybrids derived from Ti3C2 MXenes for enhanced electromagnetic wave absorption
    Fan, Bingbing
    Shang, Siyang
    Dai, Binzhou
    Zhao, Biao
    Li, Ning
    Li, Mingqiang
    Zhang, Lianji
    Zhang, Rui
    Marken, Frank
    CERAMICS INTERNATIONAL, 2020, 46 (10) : 17085 - 17092
  • [25] Effect of terminations on the hydrogen evolution reaction mechanism on Ti3C2 MXene
    Meng, Ling
    Yan, Li-Kai
    Vines, Francesc
    Illas, Francesc
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (13) : 6886 - 6900
  • [26] Pt decorated Ti3C2 MXene for enhanced methanol oxidation reaction
    Wang, Yajing
    Wang, Jiankang
    Han, Guokang
    Du, Chunyu
    Deng, Qihuang
    Gao, Yunzhi
    Yin, Geping
    Song, Ying
    CERAMICS INTERNATIONAL, 2019, 45 (02) : 2411 - 2417
  • [27] Enhanced thermoelectric performance of polycrystalline SnSe by compositing with layered Ti3C2
    Qin, Yi
    Li, Xiaohan
    Zhao, Ting
    Zhu, Jianfeng
    Yang, Yanling
    Xie, Meiqian
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2021, 32 (24) : 28192 - 28203
  • [28] Enhanced thermoelectric performance of polycrystalline SnSe by compositing with layered Ti3C2
    Yi Qin
    Xiaohan Li
    Ting Zhao
    Jianfeng Zhu
    Yanling Yang
    Meiqian Xie
    Journal of Materials Science: Materials in Electronics, 2021, 32 : 28192 - 28203
  • [29] Fabrication of Ti3C2 MXene/borosilicate glass with enhanced fracture toughness
    Liu, Lei
    Shinozaki, Kenji
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2022, 130 (08) : 696 - 700
  • [30] In situ growth of CdS spherical nanoparticles/Ti3C2 MXene nanosheet heterojunction with enhanced photocatalytic hydrogen evolution
    Chun-Mei Kai
    Cui Kong
    Feng-Jun Zhang
    Dong-Cai Li
    Ying-Rui Wang
    Won-Chun Oh
    Journal of the Korean Ceramic Society, 2022, 59 : 302 - 311