A Theory-Driven Deep Learning Method for Voice Chat-Based Customer Response Prediction

被引:10
|
作者
Chen, Gang [1 ]
Xiao, Shuaiyong [2 ]
Zhang, Chenghong [3 ]
Zhao, Huimin [4 ]
机构
[1] Zhejiang Univ, Sch Management, Hangzhou 310027, Zhejiang, Peoples R China
[2] Tongji Univ, Sch Econ & Management, Shanghai 200092, Peoples R China
[3] Fudan Univ, Sch Management, Shanghai 200433, Peoples R China
[4] Univ Wisconsin Milwaukee, Sheldon B Lubar Coll Business, Milwaukee, WI 53211 USA
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
customer response prediction; voice chat; theory-driven deep learning; dynamic satisfaction; personalized preference; cross-view attention; EXPECTATION DISCONFIRMATION THEORY; SERVICE QUALITY; SATISFACTION; EXPERIENCE; TECHNOLOGY; INTENTION; MODELS; TRUST; PERFORMANCE; ATTENTION;
D O I
10.1287/isre.2022.1196
中图分类号
G25 [图书馆学、图书馆事业]; G35 [情报学、情报工作];
学科分类号
1205 ; 120501 ;
摘要
As artificial intelligence and digitalization technologies are flourishing real-time, online interaction-based commercial modes, exploiting customers' purchase intention implied in online interaction processes may foster huge business opportunities. In this study, we target the task of voice chat-based customer response prediction in an emerging online interaction-based commercial mode, the invite-online-and-experience-in-store mode. Prior research shows that satisfaction, which can be revealed by the discrepancy between prior expectation and actual experience, is a key factor to disentangle customers' purchase intention, whereas black-box deep learning methods empirically promise us advantageous capabilities in dealing with complex voice data, for example, text and audio information incorporated in voice chat. To this end, we propose a theory-driven deep learn-ing method that enables us to (1) learn customers' personalized product preferences and dynamic satisfaction in the absence of their profile information, (2) model customers' actual experiences based on multiview voice chat information in an interlaced way, and (3) enhance the customer response prediction performance of a black-box deep learning model with theory-driven dynamic satisfaction. Empirical evaluation results demonstrate the advantageous prediction performance of our proposed method over state-of-the-art deep learning alternatives. Investigation of cumulative satisfaction reveals the collaborative pre-dictive roles of theory-driven dynamic satisfaction and deep representation features for cus-tomer response prediction. Explanatory analysis further renders insights into customers' personalized preferences and dynamic satisfaction for key product attributes.
引用
收藏
页码:1513 / 1532
页数:21
相关论文
共 50 条
  • [11] Exploring the motivations behind behavior: A theory-driven deep-learning framework for cyberviolence behavior detection
    Chen, Xuelong
    Chen, Yiping
    Yin, Guojie
    DECISION SUPPORT SYSTEMS, 2025, 190
  • [12] Inflation Prediction Method Based on Deep Learning
    Yang, Cheng
    Guo, Shuhua
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021
  • [13] A Prediction Method of Localizability Based on Deep Learning
    Gao, Yang
    Wang, Shu Qi
    Li, Jing Hang
    Hu, Meng Qi
    Xia, Hong Yao
    Hu, Hui
    Wang, Lai Jun
    IEEE ACCESS, 2020, 8 : 110103 - 110115
  • [14] Data-Driven State Prediction and Analysis of SOFC System Based on Deep Learning Method
    Rao, Mumin
    Wang, Li
    Chen, Chuangting
    Xiong, Kai
    Li, Mingfei
    Chen, Zhengpeng
    Dong, Jiangbo
    Xu, Junli
    Li, Xi
    ENERGIES, 2022, 15 (09)
  • [15] A data-driven prediction for concrete crack propagation path based on deep learning method
    Lei, Jiawei
    Xu, Chengkan
    Liu, Chaofeng
    Feng, Qian
    Zhang, He
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2024, 21
  • [16] Deep Item Response Theory as a Novel Test Theory Based on Deep Learning
    Tsutsumi, Emiko
    Kinoshita, Ryo
    Ueno, Maomi
    ELECTRONICS, 2021, 10 (09)
  • [17] Ensemble-based deep learning techniques for customer churn prediction model
    Subramanian, R. Siva
    Yamini, B.
    Sudha, Kothandapani
    Sivakumar, S.
    KYBERNETES, 2024,
  • [18] A novel prediction method of formation pore pressure driven by deep learning and Eaton method
    Xu Y.
    He B.
    Wang Y.
    Han C.
    Xiao F.
    Guan Z.
    Liu K.
    Zhongguo Shiyou Daxue Xuebao (Ziran Kexue Ban)/Journal of China University of Petroleum (Edition of Natural Science), 2023, 47 (06): : 50 - 59
  • [19] Flow velocity prediction method based on deep learning
    Zhao, Zihan
    Yang, Zihao
    SEVENTH INTERNATIONAL CONFERENCE ON TRAFFIC ENGINEERING AND TRANSPORTATION SYSTEM, ICTETS 2023, 2024, 13064
  • [20] A time series prediction method based on deep learning
    Lu T.-Z.
    Qian X.-C.
    He S.
    Tan Z.-N.
    Liu F.
    Liu, Fei (feiliu@scut.edu.cn), 1600, Northeast University (36): : 645 - 652