The population genetics of adaptation through copy number variation in a fungal plant pathogen

被引:16
|
作者
Stalder, Luzia [1 ]
Oggenfuss, Ursula [1 ]
Mohd-Assaad, Norfarhan [2 ,3 ]
Croll, Daniel [1 ]
机构
[1] Univ Neuchatel, Inst Biol, Lab Evolutionary Genet, Neuchatel, Switzerland
[2] Swiss Fed Inst Technol, Inst Integrat Biol, Plant Pathol, Zurich, Switzerland
[3] Univ Kebangsaan Malaysia, Fac Sci & Technol, Dept Appl Phys, Bangi, Selangor, Malaysia
基金
瑞士国家科学基金会;
关键词
adaptation; copy number variation; fungi; plant pathogen; REPEAT TRANSPOSABLE ELEMENTS; RECENT POSITIVE SELECTION; RHYNCHOSPORIUM-COMMUNE; CANDIDA-ALBICANS; AZOLE RESISTANCE; LOCAL ADAPTATION; EMERGING FUNGAL; EMIGRANT FAMILY; GENOME; EVOLUTION;
D O I
10.1111/mec.16435
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Microbial pathogens can adapt rapidly to changing environments such as the application of pesticides or host resistance. Copy number variations (CNVs) are a major source of adaptive genetic variation for recent adaptation. Here, we analyse how a major fungal pathogen of barley, Rhynchosporium commune, has adapted to the host environment and fungicide applications. We screen the genomes of 125 isolates sampled across a worldwide set of populations and identify a total of 7,879 gene duplications and 116 gene deletions. Most gene duplications result from segmental chromosomal duplications. Although CNVs are generally under negative selection, we find that genes affected by CNVs are enriched in functions related to host exploitation (i.e., effectors and cell-wall-degrading enzymes). We perform genome-wide association studies (GWAS) and identify a large segmental duplication of CYP51A that has contributed to the emergence of azole resistance and a duplication encompassing an effector gene affecting virulence. We show that the adaptive CNVs were probably created by recently active transposable element families. Moreover, we find that specific transposable element families are important drivers of recent gene CNV. Finally, we use a genome-wide single nucleotide polymorphism data set to replicate the GWAS and contrast it with the CNV-focused analysis. Together, our findings show how extensive segmental duplications create the raw material for recent adaptation in global populations of a fungal pathogen.
引用
收藏
页码:2443 / 2460
页数:18
相关论文
共 50 条
  • [41] Erratum to: Copy number variation in the human Y chromosome in the UK population
    Wei Wei
    Tomas W. Fitzgerald
    Qasim Ayub
    Andrea Massaia
    Blair H. Smith
    Anna F. Dominiczak
    Andrew D. Morris
    David J. Porteous
    Matthew E. Hurles
    Chris Tyler-Smith
    Yali Xue
    [J]. Human Genetics, 2015, 134 : 801 - 801
  • [42] Gene copy number variation in Indian population and its implication in health
    Suhani Almal
    Harish Padh
    [J]. Molecular Cytogenetics, 7 (Suppl 1)
  • [43] Copy number variation and neuropsychiatric problems in females and males in the general population
    Martin, Joanna
    Tammimies, Kristiina
    Karlsson, Robert
    Lu, Yi
    Larsson, Henrik
    Lichtenstein, Paul
    Magnusson, Patrik K. E.
    [J]. AMERICAN JOURNAL OF MEDICAL GENETICS PART B-NEUROPSYCHIATRIC GENETICS, 2019, 180 (06) : 341 - 350
  • [44] Copy number variation and neurodevelopmental problems in females and males in the general population
    Martin, Joanna
    Tammimies, Kristiina
    Karlsson, Robert
    Lu, Yi
    Larsson, Henrik
    Lichtenstein, Paul
    Magnusson, Patrik
    [J]. BEHAVIOR GENETICS, 2018, 48 (06) : 493 - 493
  • [45] COPY NUMBER VARIATION AND NEURODEVELOPMENTAL PROBLEMS IN FEMALES AND MALES IN THE GENERAL POPULATION
    Martin, Joanna
    Tammimies, Kristiina
    Karlsson, Robert
    Yi, Lu
    Larsson, Henrik
    Lichtenstein, Paul
    Magnusson, Patrik
    [J]. EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2019, 29 : 1022 - 1022
  • [46] Population history modulates the fitness effects of Copy Number Variation in the Roma
    Antinucci, Marco
    Comas, David
    Calafell, Francesc
    [J]. HUMAN GENETICS, 2023, 142 (9) : 1327 - 1343
  • [47] Mapping copy number variation by population-scale genome sequencing
    Mills, Ryan E.
    Walter, Klaudia
    Stewart, Chip
    Handsaker, Robert E.
    Chen, Ken
    Alkan, Can
    Abyzov, Alexej
    Yoon, Seungtai Chris
    Ye, Kai
    Cheetham, R. Keira
    Chinwalla, Asif
    Conrad, Donald F.
    Fu, Yutao
    Grubert, Fabian
    Hajirasouliha, Iman
    Hormozdiari, Fereydoun
    Iakoucheva, Lilia M.
    Iqbal, Zamin
    Kang, Shuli
    Kidd, Jeffrey M.
    Konkel, Miriam K.
    Korn, Joshua
    Khurana, Ekta
    Kural, Deniz
    Lam, Hugo Y. K.
    Leng, Jing
    Li, Ruiqiang
    Li, Yingrui
    Lin, Chang-Yun
    Luo, Ruibang
    Mu, Xinmeng Jasmine
    Nemesh, James
    Peckham, Heather E.
    Rausch, Tobias
    Scally, Aylwyn
    Shi, Xinghua
    Stromberg, Michael P.
    Stuetz, Adrian M.
    Urban, Alexander Eckehart
    Walker, Jerilyn A.
    Wu, Jiantao
    Zhang, Yujun
    Zhang, Zhengdong D.
    Batzer, Mark A.
    Ding, Li
    Marth, Gabor T.
    McVean, Gil
    Sebat, Jonathan
    Snyder, Michael
    Wang, Jun
    [J]. NATURE, 2011, 470 (7332) : 59 - 65
  • [48] Group A Streptococcus:: allelic variation, population genetics, and host-pathogen interactions
    Reid, SD
    Hoe, NP
    Smoot, LM
    Musser, JM
    [J]. JOURNAL OF CLINICAL INVESTIGATION, 2001, 107 (04): : 393 - 399
  • [49] Complex adaptive architecture underlies adaptation to quantitative host resistance in a fungal plant pathogen
    Dumartinet, Thomas
    Ravel, Sebastien
    Roussel, Veronique
    Perez-Vicente, Luis
    Aguayo, Jaime
    Abadie, Catherine
    Carlier, Jean
    [J]. MOLECULAR ECOLOGY, 2022, 31 (04) : 1160 - 1179
  • [50] The Copy Number Variation of OsMTD1 Regulates Rice Plant Architecture
    Liu, Qing
    Xu, Jinke
    Zhu, Yunhua
    Mo, Yuxing
    Yao, Xue-Feng
    Wang, Ruozhong
    Ku, Wenzhen
    Huang, Zhigang
    Xia, Shitou
    Tong, Jianhua
    Huang, Chao
    Su, Yi
    Lin, Wanhuang
    Peng, Keqin
    Liu, Chun-Ming
    Xiao, Langtao
    [J]. FRONTIERS IN PLANT SCIENCE, 2021, 11