Multi-Modal Urban Traffic Transfer Schedule Timetable Bi-Objective Optimization: Model, Algorithm, Comparison, and Case Study

被引:2
|
作者
Tian, Feng [1 ]
Liang, Jie [2 ]
Chen, Ruihan [3 ]
机构
[1] Xinjiang Agr Univ, Coll Transportat & Logist Engn, Urumqi, Peoples R China
[2] Southwest Univ, Business Coll, Chongqing, Peoples R China
[3] Zhejiang Normal Univ, Dept Math, Jinhua, Peoples R China
关键词
transfer connections; bus schedules; multi-objective optimization; augmented weighted Chebyshev algorithm; Genetic algorithm; SYNCHRONIZATION; TIME;
D O I
10.1177/03611981241229089
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The optimization of the connection between urban rail transit and the bus is an essential issue that benefits passenger travel and the urban structure and has social benefits, which can be realized by reasonably adjusting the bus departure schedule. This study is necessary because the development status quo of China's urban transportation network planning is unreasonable, travel efficiency is not high, and operating costs are high. This paper sets up the decision variables of bus departure time and departure interval at each station, establishes a dual-objective optimization model with the minimum schedule change and the minimum transfer time, and studies the application of the augmented Chebyshev algorithm in the dual-objective optimization model. Secondly, based on the Shenzhen metro and public transportation integrated circuit card data, the case analysis uses the generalized Chebyshev algorithm and the non-dominated sorting genetic algorithm, respectively. The optimization results show that using the improved augmented and generalized Chebyshev algorithm in the bus schedule alteration time within a reasonable range can maximize the total transfer time, which compared with the original scheme is shortened by 68.06%. In contrast, genetic algorithms will make the complete bus schedule alteration prominent, and the whole transfer time is substantially increased. The results show that the improved augmented generalized Chebyshev algorithm is more suitable for solving the dual-objective rail transit connection problem.
引用
收藏
页码:295 / 310
页数:16
相关论文
共 50 条
  • [21] State-based accelerations and bidirectional search for bi-objective multi-modal shortest paths
    Artigues, Christian
    Huguet, Marie-Jose
    Gueye, Fallou
    Schettini, Frederic
    Dezou, Laurent
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2013, 27 : 233 - 259
  • [22] Multi-modal urban transit network design considering reliability: multi-objective bi-level optimization
    Barahimi, Amir Hossein
    Eydi, Alireza
    Aghaie, Abdolah
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2021, 216
  • [23] A novel multi-objective competitive swarm optimization algorithm for multi-modal multi objective problems
    Wang, Ying
    Yang, Zhile
    Guo, Yuanjun
    Zhu, Juncheng
    Zhu, Xiaodong
    2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2019, : 271 - 278
  • [24] Bi-objective location optimization model for taxi stands in urban hotspots
    Wang X.
    Qu Z.
    Song X.
    Zhang M.
    Song, Xianmin (songxm@jlu.edu.cn), 1600, Harbin Institute of Technology (52): : 106 - 112
  • [25] Dynamic Multi-modal Multi-objective Optimization: A Preliminary Study
    Peng, Yiming
    Ishibuchi, Hisao
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XVII, PPSN 2022, PT II, 2022, 13399 : 138 - 150
  • [26] Multi-modal Multi-objective Particle Swarm Optimization Algorithm with Bi-topological Structures and Rebirth Mechanism
    Huang, Huimei
    Zou, Feng
    Chen, DeBao
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT I, ICIC 2024, 2024, 14862 : 489 - 501
  • [27] Bi-objective evolutionary optimization of level of service in urban transportation based on traffic density
    Armas, Rolando
    Aguirre, Hernan
    Tanaka, Kiyoshi
    COGENT ENGINEERING, 2018, 5 (01): : 1 - 21
  • [28] Multi-modal Multi-objective Optimization: Problem Analysis and Case Studies
    Peng, Yiming
    Ishibuchi, Hisao
    Shang, Ke
    2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 1865 - 1872
  • [29] A Decomposition-Based Evolutionary Algorithm for Multi-modal Multi-objective Optimization
    Tanabe, Ryoji
    Ishibuchi, Hisao
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XV, PT I, 2018, 11101 : 249 - 261
  • [30] A hierarchical clustering algorithm for addressing multi-modal multi-objective optimization problems
    Gu, Qinghua
    Niu, Yiwen
    Hui, Zegang
    Wang, Qian
    Xiong, Naixue
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 264