Asynchronously H∞ Tracking Control and Optimization for Switched Flight Vehicles with Time-Varying Delay

被引:0
|
作者
Yang, Xing [1 ]
Fu, Bin [1 ]
Ma, Xiaochuan [2 ]
Liu, Yu [2 ]
Yuan, Dongyu [2 ]
Wu, Xintong [2 ]
机构
[1] Northwestern Polytech Univ, Unmanned Syst Reasearch Inst, Xian 710072, Peoples R China
[2] Chinese Acad Sci, Inst Acoust, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
asynchronous H-infinity control; time-varying delay; multiple Lyapunov function; mode-dependent average dwell time; LMI; deep Q learning; NONLINEAR-SYSTEMS; LINEAR-SYSTEMS; STABILIZATION; STABILITY;
D O I
10.3390/aerospace11020107
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The current paper verifies the asynchronous H-infinity control and optimization problem for flight vehicles with a time-varying delay. The nonlinear dynamic model and Jacobian linearization establish the flight vehicle's switched model. An asynchronous H-infinity tracking controller is designed, considering the existing asynchronous switching between the controllers and corresponding subsystems. In order to promote transient efficiency, the tracking controller comprises the model-based part and the learning-based part. The model-based part guarantees stability and prescribed efficiency, and the learning-based part compensates for undesirable uncertainties. The multiple Lyapunov function (MLF) and mode-dependent average dwell time (MDADT) methods are utilized to guarantee stability and the specified attenuation efficiency. The existing conditions and the solutions of model-based sub-controllers are represented by linear matrix inequalities (LMIs). The deep Q learning (DQL) algorithm provides the learning-based part. Different from the conventional method, the controller parameters are scheduled online. Therefore, robustness, stability, and dynamic efficiency can be met simultaneously. A numerical example illustrates the efficiency and advantage of the presented approach.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] H∞ Control for Mixed-Mode Based Switched Nonlinear Systems with Time-Varying Delay
    Liu, Zhen
    Miao, Shu
    Ye, Canbo
    Liu, Xingbo
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2019, 2019
  • [32] H∞ Control of a Building Structure with Time-Varying Delay
    Liu, Kun
    Chen, Longxiang
    Cai, Guoping
    [J]. ADVANCES IN STRUCTURAL ENGINEERING, 2015, 18 (05) : 643 - 657
  • [33] H∞ Control For Uncertain Systems With Time-Varying Delay
    Yan, Dongmei
    Wang, Youwei
    [J]. 2012 INTERNATIONAL CONFERENCE ON INDUSTRIAL CONTROL AND ELECTRONICS ENGINEERING (ICICEE), 2012, : 1732 - 1734
  • [34] Robust reliable control of switched uncertain systems with time-varying delay
    Yang, S.
    Zhengrong, X.
    Qingwei, C.
    Weili, H.
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2006, 37 (15) : 1077 - 1087
  • [35] Sliding mode control of switched hybrid systems with time-varying delay
    Wu, Ligang
    Lam, James
    [J]. INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2008, 22 (10) : 909 - 931
  • [36] Robust H∞ control of heterogeneous connected vehicles platoon with random time-varying communication delay
    Ru, Shuangkun
    Jiao, Xiaohong
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2024, 238 (08) : 1437 - 1449
  • [37] Robust tracking control for switched linear systems with time-varying delays
    Li, Qing-Kui
    Dimirovski, Georgi M.
    Zhao, Jun
    [J]. 2008 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2008, : 1576 - +
  • [39] Robust tracking control for switched linear systems with time-varying delays
    Li, Q. -K.
    Zhao, J.
    Dimirovski, G. M.
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2008, 2 (06): : 449 - 457
  • [40] Tracking control for switched nonlinear systems with multiple time-varying delays
    Zhai, Jun-yong
    Wang, Bin
    Fei, Shu-min
    [J]. NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2015, 17 : 44 - 55