A note on the rate of convergence of integration schemes for closed surfaces

被引:1
|
作者
Zavalani, Gentian [1 ,2 ,3 ]
Shehu, Elima [4 ,5 ]
Hecht, Michael [1 ,2 ]
机构
[1] Ctr Adv Syst Understanding CASUS, D-02826 Gorlitz, Germany
[2] Helmholtz Zentrum Dresden Rossendorf, D-01328 Dresden, Germany
[3] Tech Univ Dresden, Dresden, Germany
[4] Max Planck Inst Math Sci, Leipzig, Germany
[5] Osnabruck Univ, Osnabruck, Germany
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2024年 / 43卷 / 02期
关键词
Numerical integration; Surface integrals; Convergence rates; Closest point projection; Chebyshev-Lobatto nodes;
D O I
10.1007/s40314-024-02611-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we issue an error analysis for integration over discrete surfaces using the surface parametrization presented in Praetorius and Stenger (Arch Numer Softw 1(1):2022, 2022) as well as prove why even-degree polynomials utilized for approximating both the smooth surface and the integrand exhibit a higher convergence rate than odd-degree polynomials. Additionally, we provide some numerical examples that illustrate our findings and propose a potential approach that overcomes the problems associated with the original one.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] A Note on Rate of Convergence in Probability to Semicircular Law
    Bai, Zhidong
    Hu, Jiang
    Pan, Guangming
    Zhou, Wang
    ELECTRONIC JOURNAL OF PROBABILITY, 2011, 16 : 2439 - 2451
  • [22] A NOTE ON THE CONVERGENCE RATE IN REGULARIZED STOCHASTIC PROGRAMMING
    Gordienko, Evgueni
    Gryazin, Yury
    KYBERNETIKA, 2021, 57 (01) : 38 - 45
  • [23] A Note On Convergence Rate of Randomized Kaczmarz Method
    Guan, Ying-Jun
    Li, Wei-Guo
    Xing, Li-Li
    Qiao, Tian-Tian
    CALCOLO, 2020, 57 (03)
  • [25] A NOTE ON THE EXPONENTIAL CONVERGENCE RATE FOR PRODUCTS OF SUMS
    Miao, Yu
    Qian, Bin
    MATEMATICKI VESNIK, 2010, 62 (04): : 251 - 258
  • [26] On the Rate of Convergence of Kirk-Type Iterative Schemes
    Hussain, Nawab
    Chugh, Renu
    Kumar, Vivek
    Rafiq, Arif
    JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [27] On Rate of Convergence of Jungck-Type Iterative Schemes
    Hussain, Nawab
    Kumar, Vivek
    Kutbi, Marwan A.
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [28] The convergence rate of finite difference schemes in the presence of shocks
    Engquist, B
    Sjogren, B
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (06) : 2464 - 2485
  • [29] A note on integration schemes for the microplane model of the mechanical behaviour of concrete
    Badel, PB
    Leblond, JB
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2004, 20 (01): : 75 - 81
  • [30] ON THE RATE OF CONVERGENCE FOR MONOTONE NUMERICAL SCHEMES FOR NONLOCAL ISAACS EQUATIONS
    Biswas, Imran H.
    Chowdhury, Indranil
    Jakobsen, Espen R.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (02) : 799 - 827