Neurotensin receptor-1 antagonist SR48692 modulation of high-fat diet-induced pathogenesis of NAFLD in mice

被引:2
|
作者
Pal, Himanshu [1 ]
Verma, Pradeep [1 ]
Mohanty, Banalata [1 ]
机构
[1] Univ Allahabad, Dept Zool, Allahabad 211002, India
关键词
high-fat diet; lipid metabolism; NTSR1 antagonist SR48692; oxidative stress; OXIDATIVE STRESS; LIVER-DISEASE; INSULIN-RESISTANCE; ACID-SECRETION; ANIMAL-MODEL; MOUSE MODEL; FOOD-INTAKE; INFLAMMATION; METABOLISM; SR-48692;
D O I
10.1002/ejlt.202300162
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
This study investigates the efficacy of the antagonist of neurotensin receptor-1 (NTSR1) SR48692 in modulating the high-fat diet (HFD)-induced nonalcoholic fatty liver disease (NAFLD). HFD increases NTS secretion, which enhances fat absorption from the gastrointestinal tract (GIT) via receptors NTSR1/NTSR2/NTSR3. Absorbed fat from the GIT via hepatic-portal system reaches the liver, where it gets accumulated to cause NAFLD. Swiss albino mice (8 weeks) were maintained in two batches fed standard diet (SD) and HFD for 4 weeks, then divided into six groups: Group I (SD) and Group II (HFD) administered intraperitoneally 0.9% saline (vehicle), Group III: low dose of antagonist (100 mu g kg-1 bw: HFD+SR48692L), Group IV: high dose (400 mu g kg-1 bw: HFD+SR48692H), Group V (SD+SR48692L), and Group VI (SD+SR48692H). SR48692L treatment in HFD-fed mice showed partial efficacy in preventing lipid absorption and reducing oxidative stress, as reflected in histology and plasma transaminases. Contrarily, with SR48692H dose, the effects were detrimental. Involvement of other signaling pathways (NTS-NTSR2, NTS-NTSR3) in lipid absorption might be the reason of partial efficacy. The adverse effects with the SR48692H might be due to the differential dose-response effect of the antagonist.Practical Application: HFD-induced hyperlipidemia and NAFLD are linked to enhanced NTS secretion. As NTS enhances fat absorption, blocking its receptors with antagonists might provide efficacy against HFD-induced NAFLD. This study with NTSR1 antagonist SR48692 provides some evidence of its in preventing hyperlipidemia; further studies targeting other receptors (NTSR2, NTSR3) are essential for understanding the therapeutic efficacy of the NTS antagonists for NAFLD. Graphical Abstract: The present study focused on the ameliorative effect of SR48692 in HFD-induced NAFLD in mice. Consumption of HFD impaired plasma lipid profiles, antioxidant defense system, as well as histopathological alterations in liver. The co-treatment with a low dose of SR48692 (HFD+SR48692L) reverts the studied parameters, which suggests its therapeutic approach for NAFLD. image
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Gelatinases impart susceptibility to high-fat diet-induced obesity in mice
    Biga, Peggy R.
    Froehlich, Jacob M.
    Greenlee, Kendra J.
    Galt, Nicholas J.
    Meyer, Ben M.
    Christensen, Delci J.
    JOURNAL OF NUTRITIONAL BIOCHEMISTRY, 2013, 24 (08): : 1462 - 1468
  • [32] The Involvement of Sirtuin 1 Dysfunction in High-Fat Diet-Induced Vascular Dysfunction in Mice
    Xia, Ning
    Reifenberg, Gisela
    Schirra, Christian
    Li, Huige
    ANTIOXIDANTS, 2022, 11 (03)
  • [33] Uraria crinita ameliorates high-fat diet-induced prediabetes in mice
    Zhang, Jinping
    Wu, Ting
    Lan, Qunsheng
    Zhao, Zean
    Pang, Jianxin
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, 2020, 13 (07): : 4812 - 4821
  • [34] Inactivation of SPARC enhances high-fat diet-induced obesity in mice
    Nie, Jing
    Bradshaw, Amy D.
    Delany, Anne M.
    Sage, E. Helene
    CONNECTIVE TISSUE RESEARCH, 2011, 52 (02) : 99 - 108
  • [35] Berberine inhibits adipogenesis in high-fat diet-induced obesity mice
    Hu, Yueshan
    Davies, Gareth E.
    FITOTERAPIA, 2010, 81 (05) : 358 - 366
  • [36] Cholecystokinin Knockout Mice Are Resistant to High-Fat Diet-Induced Obesity
    Lo, Chun-Min
    King, Alexandra
    Samuelson, Linda C.
    Kindel, Tammy Lyn
    Rider, Therese
    Jandacek, Ronald J.
    Raybould, Helen E.
    Woods, Stephen C.
    Tso, Patrick
    GASTROENTEROLOGY, 2010, 138 (05) : 1997 - 2005
  • [37] Sulforaphane ameliorates high-fat diet-induced spermatogenic deficiency in mice
    Mu, Yang
    Yin, Tai-lang
    Huang, Xiao-xuan
    Hu, Xue
    Yin, Lu
    Yang, Jing
    BIOLOGY OF REPRODUCTION, 2019, 101 (01) : 223 - 234
  • [38] Orlistat ameliorates lipid dysmetabolism in high-fat diet-induced mice via gut microbiota modulation
    Huang, Chengyan
    He, Yuanhui
    Chai, Ping
    Liu, Zongxin
    Su, Sirui
    Zhang, Yanhui
    Luo, Yuelan
    Fu, Shuiping
    FRONTIERS IN MICROBIOLOGY, 2025, 16
  • [39] Curcumin modulation of high fat diet-induced atherosclerosis and steatohepatosis in LDL receptor deficient mice
    Hasan, S. T.
    Zingg, J. -M.
    Kwan, P.
    Noble, T.
    Smith, D.
    Meydani, M.
    ATHEROSCLEROSIS, 2014, 232 (01) : 40 - 51
  • [40] Lipidomics reveals the lipid-lowering and hepatoprotective effects of Celosia Semen on high-fat diet-induced NAFLD mice
    Zhao, Jin-Quan
    Zhou, Qi-Qi
    Liu, Ke
    Li, Ping
    Jiang, Yan
    Li, Hui-Jun
    JOURNAL OF ETHNOPHARMACOLOGY, 2025, 337