Robust Low-Rank Tensor Decomposition with the L2 Criterion

被引:0
|
作者
Heng, Qiang [1 ]
Chi, Eric C. [2 ]
Liu, Yufeng [3 ]
机构
[1] N Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA
[2] Rice Univ, Dept Stat, Houston, TX 77005 USA
[3] Univ N Carolina, Dept Biostat, Dept Genet, Dept Stat & Operat Res, Chapel Hill, NC 27515 USA
基金
美国国家科学基金会;
关键词
Inverse problem; L-2; criterion; Nonconvexity; Robustness; Tucker decomposition; ALGORITHM; TRANSFORMATION; COMPLETION;
D O I
10.1080/00401706.2023.2200541
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The growing prevalence of tensor data, or multiway arrays, in science and engineering applications motivates the need for tensor decompositions that are robust against outliers. In this article, we present a robust Tucker decomposition estimator based on the L-2 criterion, called the Tucker-L2E. Our numerical experiments demonstrate that Tucker-L2E has empirically stronger recovery performance in more challenging high-rank scenarios compared with existing alternatives. The appropriate Tucker-rank can be selected in a data-driven manner with cross-validation or hold-out validation. The practical effectiveness of Tucker-L2E is validated on real data applications in fMRI tensor denoising, PARAFAC analysis of fluorescence data, and feature extraction for classification of corrupted images.
引用
收藏
页码:537 / 552
页数:16
相关论文
共 50 条
  • [41] Tensor Factorization for Low-Rank Tensor Completion
    Zhou, Pan
    Lu, Canyi
    Lin, Zhouchen
    Zhang, Chao
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (03) : 1152 - 1163
  • [42] PRACTICAL LEVERAGE-BASED SAMPLING FOR LOW-RANK TENSOR DECOMPOSITION
    Larsen, Brett W.
    Kolda, Tamara G.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2022, 43 (03) : 1488 - 1517
  • [43] Robust Generalized Low-Rank Decomposition of Multimatrices for Image Recovery
    Wang, Hengyou
    Cen, Yigang
    He, Zhihai
    Zhao, Ruizhen
    Cen, Yi
    Zhang, Fengzhen
    IEEE TRANSACTIONS ON MULTIMEDIA, 2017, 19 (05) : 969 - 983
  • [44] A low-rank and sparse enhanced Tucker decomposition approach for tensor completion
    Pan, Chenjian
    Ling, Chen
    He, Hongjin
    Qi, Liqun
    Xu, Yanwei
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 465
  • [45] Nonlocal Low-Rank Regularized Tensor Decomposition for Hyperspectral Image Denoising
    Xue, Jize
    Zhao, Yongqiang
    Liao, Wenzhi
    Chan, Jonathan Cheung-Wai
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (07): : 5174 - 5189
  • [46] Hyperspectral denoising based on the principal component low-rank tensor decomposition
    Wu, Hao
    Yue, Ruihan
    Gao, Ruixue
    Wen, Rui
    Feng, Jun
    Wei, Youhua
    OPEN GEOSCIENCES, 2022, 14 (01) : 518 - 529
  • [47] Hyperspectral Superresolution Reconstruction via Decomposition of Low-Rank and Sparse Tensor
    Wu, Huajing
    Zhang, Kefei
    Wu, Suqin
    Zhang, Minghao
    Shi, Shuangshuang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 8943 - 8957
  • [48] Hyperspectral Image Denoising With Group Sparse and Low-Rank Tensor Decomposition
    Huang, Zhihong
    Li, Shutao
    Fang, Leyuan
    Li, Huali
    Benediktsson, Jon Atli
    IEEE ACCESS, 2018, 6 : 1380 - 1390
  • [49] Low-Rank Regularized Heterogeneous Tensor Decomposition Algorithm for Subspace Clustering
    Zhang Jing
    Fu Jianpeng
    Li Xinhui
    LASER & OPTOELECTRONICS PROGRESS, 2018, 55 (07)
  • [50] AN ADAPTIVE ALGEBRAIC MULTIGRID ALGORITHM FOR LOW-RANK CANONICAL TENSOR DECOMPOSITION
    De Sterck, Hans
    Miller, Killian
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (01): : B1 - B24