Dual Metric Learning for Effective and Efficient Cross-Domain Recommendations

被引:26
|
作者
Li, Pan [1 ]
Tuzhilin, Alexander [1 ]
机构
[1] NYU, Stern Sch Business, Dept Technol Operat & Stat, New York, NY 10012 USA
基金
澳大利亚研究理事会;
关键词
Cross domain recommendation; dual learning; metric learning; orthogonal mapping; ALGORITHMS;
D O I
10.1109/TKDE.2021.3074395
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cross domain recommender systems have been increasingly valuable for helping consumers identify useful items in different applications. However, existing cross-domain models typically require large number of overlap users, which can be difficult to obtain in some applications. In addition, they did not consider the duality structure of cross-domain recommendation tasks, thus failing to take into account bidirectional latent relations between users and items and achieve optimal recommendation performance. To address these issues, in this paper we propose a novel cross-domain recommendation model based on dual learning that transfers information between two related domains in an iterative manner until the learning process stabilizes. We develop a novel latent orthogonal mapping to extract user preferences over multiple domains while preserving relations between users across different latent spaces. Furthermore, we combine the dual learning method with the metric learning approach, which allows us to significantly reduce the required common user overlap across the two domains and leads to even better cross-domain recommendation performance. We test the proposed model on two large-scale industrial datasets and six domain pairs, demonstrating that it consistently and significantly outperforms all the state-of-the-art baselines. We also show that the proposed model works well with very few overlap users to obtain satisfying recommendation performance comparable to the state-of-the-art baselines that use many overlap users.
引用
收藏
页码:321 / 334
页数:14
相关论文
共 50 条
  • [21] Learning Cross-Domain Features With Dual-Path Signal Transformer
    Zhai, Lei
    Li, Yitong
    Feng, Zhixi
    Yang, Shuyuan
    Tan, Hao
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (02) : 3863 - 3869
  • [22] Entity knowledge transfer-oriented dual-target cross-domain recommendations
    Li, Yakun
    Wu, Qiang
    Hou, Lei
    Li, Juanzi
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 195
  • [23] Cross-Domain Gated Learning for Domain Generalization
    Dapeng Du
    Jiawei Chen
    Yuexiang Li
    Kai Ma
    Gangshan Wu
    Yefeng Zheng
    Limin Wang
    International Journal of Computer Vision, 2022, 130 : 2842 - 2857
  • [24] Cross-Domain Gated Learning for Domain Generalization
    Du, Dapeng
    Chen, Jiawei
    Li, Yuexiang
    Ma, Kai
    Wu, Gangshan
    Zheng, Yefeng
    Wang, Limin
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2022, 130 (11) : 2842 - 2857
  • [25] Model Reprogramming: Resource-Efficient Cross-Domain Machine Learning
    Chen, Pin-Yu
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 20, 2024, : 22584 - 22591
  • [26] A Unified Framework for Cross-Domain and Cross-System Recommendations
    Zhu, Feng
    Wang, Yan
    Zhou, Jun
    Chen, Chaochao
    Li, Longfei
    Liu, Guanfeng
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (02) : 1171 - 1184
  • [27] A Deep Framework for Cross-Domain and Cross-System Recommendations
    Zhu, Feng
    Wang, Yan
    Chen, Chaochao
    Liu, Guanfeng
    Orgun, Mehmet
    Wu, Jia
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 3711 - 3717
  • [28] CROSS-DOMAIN SEMI-SUPERVISED DEEP METRIC LEARNING FOR IMAGE SENTIMENT ANALYSIS
    Liang, Yun
    Maeda, Keisuke
    Ogawa, Takahiro
    Haseyama, Miki
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 4150 - 4154
  • [29] Cross-Domain Feature Learning in Multimedia
    Yang, Xiaoshan
    Zhang, Tianzhu
    Xu, Changsheng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2015, 17 (01) : 64 - 78
  • [30] Deep sparse autoencoder prediction model based on adversarial learning for cross-domain recommendations
    Li, Yakun
    Ren, Jiadong
    Liu, Jiaomin
    Chang, Yixin
    KNOWLEDGE-BASED SYSTEMS, 2021, 220