Physiological, biochemical, and molecular responses of rice (Oryza sativa L.) towards elevated ozone tolerance

被引:5
|
作者
Sahoo, Jyoti Prakash [1 ]
Mishra, Pratikshya [2 ]
Mishra, Ambika Prasad [3 ]
Panda, Koustava Kumar [4 ]
Samal, Kailash Chandra [1 ]
机构
[1] Odisha Univ Agr & Technol, Dept Agr Biotechnol, Bhubaneswar 751003, Orissa, India
[2] Odisha Univ Agr & Technol, Dept Plant Breeding & Genet, Bhubaneswar 751003, Orissa, India
[3] Sri Sri Univ, Fac Agr, Dept Soil Sci & Agr Chem, Cuttack 754006, India
[4] Centurion Univ Technol & Management, MS Swaminathan Sch Agr, Dept Plant Biotechnol, Paralakhemundi 761211, India
关键词
Rice; O-3; tolerance; Physiology and growth; Molecular breeding; Quantitative trait loci; YANGTZE-RIVER DELTA; GENE-EXPRESSION; CARBON-DIOXIDE; GRAIN QUALITY; WINTER-WHEAT; GAS-EXCHANGE; CROP YIELD; CULTIVARS; EXPOSURE; IMPACT;
D O I
10.1007/s42976-022-00316-8
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Rice (Oryza sativa L.) is one of the most important staple food crops that is cultivated in South East Asia. This crop is affected by a wide range of biotic and abiotic factors, each of which is contributing to a change in its physiology, biochemistry, and genetic makeup. Ozone is produced in the troposphere as a result of reactions between abiotic factors, such as oxides of nitrogen and carbon, and UV radiation. These reactions lead to the production of a wide variety of volatile organic compounds. Rice scientists have expressed a great deal of concern regarding the impact of ozone on rice, which has necessitated the development of strategies to combat the problem. The recent advances in rice genomics have led to the discovery of molecular biology approaches such as marker-assisted selection involving quantitative trait loci linked to genes that confer tolerance to ozone stress. This trait is thought to be controlled by a large number of loci with medium effects rather than by a single locus with a large effect. The current review is an effort to provide information on the physiological, biochemical, and molecular responses of rice towards elevated ozone tolerance and also to reflect the available strategies to minimize the effect.
引用
收藏
页码:315 / 324
页数:10
相关论文
共 50 条
  • [31] Physiological and Biochemical Response of Rice Cultivars (Oryza SativaL.) To Elevated Ozone
    Ramya, Ambikapathi
    Dhevagi, Periyasamy
    Priyatharshini, Sengottiyan
    Chandrasekhar, C. N.
    Valliappan, K.
    Venkataramani, S.
    OZONE-SCIENCE & ENGINEERING, 2021, 43 (04) : 363 - 377
  • [32] Phosphinothricin tolerance in rice (Oryza sativa L.) seedlings is associated with elevated abscisic acid in the leaves
    Hsu, YT
    Kao, CH
    BOTANICAL BULLETIN OF ACADEMIA SINICA, 2004, 45 (01): : 41 - 48
  • [33] Morpho-physiological and biochemical response of rice (Oryza sativa L.) to drought stress: A review
    Bhandari, Utsav
    Gajurel, Aakriti
    Khadka, Bharat
    Thapa, Ishwor
    Chand, Isha
    Bhatta, Dibya
    Poudel, Anju
    Pandey, Meena
    Shrestha, Suraj
    Shrestha, Jiban
    HELIYON, 2023, 9 (03)
  • [34] Biochemical and molecular markers for establishing distinctiveness of aromatic rice (Oryza sativa L.) varieties
    Joshi, Abhilasha
    Chawla, H. S.
    INDIAN JOURNAL OF GENETICS AND PLANT BREEDING, 2010, 70 (01) : 58 - 64
  • [35] Biochemical and physiological response of rice (Oryza sativa L.) plants to copper oxide nanoparticle stress
    Hassan, Ibrahim A.
    El Dakak, Rehab
    Haiha, Nesreen S.
    Abd Elmegeid, Walaa
    El-Sheekh, Mostafa
    Rahman, Salwa Abdul
    Basahi, Jalal
    Summan, Ahmad
    Ismail, Iqbal
    AGROCHIMICA, 2021, 65 (01): : 53 - 67
  • [36] Biochemical and molecular changes in rice seedlings (Oryza sativa L.) to cope with chromium stress
    Kabir, A. H.
    PLANT BIOLOGY, 2016, 18 (04) : 710 - 719
  • [37] Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.)
    Jagadish, S. V. K.
    Muthurajan, R.
    Oane, R.
    Wheeler, T. R.
    Heuer, S.
    Bennett, J.
    Craufurd, P. Q.
    JOURNAL OF EXPERIMENTAL BOTANY, 2010, 61 (01) : 143 - 156
  • [38] Cellular traits for sodium tolerance in rice (Oryza sativa L.)
    Kader, Md Abdul
    Lindberg, Sylvia
    PLANT BIOTECHNOLOGY, 2008, 25 (03) : 247 - 255
  • [39] In vitro selection for drought tolerance in rice (Oryza sativa L.)
    Muthuramu, S.
    Jebaraj, S.
    Nadarajan, N.
    Gunasekaran, M.
    Gnanasekaran, M.
    PLANT ARCHIVES, 2008, 8 (01): : 215 - 218
  • [40] Mapping of QTL for salt tolerance in rice (Oryza sativa L. ) via molecular markers
    LIN Hongxuan
    Okinawa Subtropical Station
    ChineseRiceResearchNewsletter, 1997, (04) : 1 - 2