Dual quaternion singular value decomposition based on bidiagonalization to a dual number matrix using dual quaternion householder transformations

被引:8
|
作者
Ding, Wenxv [1 ]
Li, Ying [2 ]
Wang, Tao [2 ]
Wei, Musheng [3 ]
机构
[1] Shantou Univ, Dept Math, Shantou 515821, Guangdong, Peoples R China
[2] Liaocheng Univ, Coll Math Sci, Liaocheng 252000, Shandong, Peoples R China
[3] Shanghai Normal Univ, Coll Math Sci, Shanghai 200234, Peoples R China
基金
中国国家自然科学基金;
关键词
Dual quaternion; Singular value decomposition; Dual quaternion householder transformation; Bidiagonalization;
D O I
10.1016/j.aml.2024.109021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a practical method for computing the singular value decomposition of dual quaternion matrices. The dual quaternion Householder matrix is first proposed, and by combining the properties of dual quaternions, we can implement the transformation of a dual quaternion matrix to a bidiagonalized dual number matrix. We have proven that the singular values of a dual quaternion matrix are same to the singular values of its bidiagonalized dual number matrix. Numerical experiment demonstrates the effectiveness of our proposed method for computing the singular value decomposition of dual quaternion matrices.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] RANDOMIZED QUATERNION SINGULAR VALUE DECOMPOSITION FOR LOW-RANK MATRIX APPROXIMATION
    LIU, Q. I. A. O. H. U. A.
    LING, S. I. T. A. O.
    JIA, Z. H. I. G. A. N. G.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (02): : A870 - A900
  • [42] Quaternion matrix singular value decomposition and its applications for color image processing
    Pei, SC
    Chang, JH
    Ding, JJ
    2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 1, PROCEEDINGS, 2003, : 805 - 808
  • [43] Fixed-precision randomized quaternion singular value decomposition algorithm for low-rank quaternion matrix approximations
    Liu, Yonghe
    Wu, Fengsheng
    Che, Maolin
    Li, Chaoqian
    NEUROCOMPUTING, 2024, 580
  • [44] Predicting Rigid Body Dynamics Using Dual Quaternion Recurrent Neural Networks With Quaternion Attention
    Poeppelbaum, Johannes
    Schwung, Andreas
    IEEE ACCESS, 2022, 10 : 82923 - 82943
  • [45] Quaternion tensor singular value decomposition using a flexible transform-based approach
    Miao, Jifei
    Kou, Kit Ian
    SIGNAL PROCESSING, 2023, 206
  • [46] Solving the Dual Generalized Commutative Quaternion Matrix Equation AXB = C
    Shi, Lei
    Wang, Qing-Wen
    Xie, Lv-Ming
    Zhang, Xiao-Feng
    SYMMETRY-BASEL, 2024, 16 (10):
  • [47] A Power Method for Computing the Dominant Eigenvalue of a Dual Quaternion Hermitian Matrix
    Cui, Chunfeng
    Qi, Liqun
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 100 (01)
  • [48] Color image quality assessment based on quaternion singular value decomposition
    Wang, Yuqing
    Liu, Weiya
    Wang, Yong
    CISP 2008: FIRST INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOL 3, PROCEEDINGS, 2008, : 433 - 439
  • [49] Algebraic method for LU decomposition of dual quaternion matrix and its corresponding structure-preserving algorithm
    Wang, Tao
    Li, Ying
    Wei, Musheng
    Xi, Yimeng
    Zhang, Mingcui
    NUMERICAL ALGORITHMS, 2024, 97 (03) : 1367 - 1382
  • [50] Kinematic modeling of an anthropomorphic hand using unit dual quaternion
    Chandra, Rohit
    Corrales-Ramon, Juan Antonio
    Mezouar, Youcef
    2019 IEEE/SICE INTERNATIONAL SYMPOSIUM ON SYSTEM INTEGRATION (SII), 2019, : 433 - 437