Lightweight improved residual network for efficient inverse tone mapping

被引:0
|
作者
Xue, Liqi [1 ]
Xu, Tianyi [1 ]
Song, Yongbao [2 ]
Liu, Yan [1 ]
Zhang, Lei [3 ]
Zhen, Xiantong [3 ]
Xu, Jun [1 ,4 ]
机构
[1] Nankai Univ, Sch Stat & Data Sci, Tianjin 300071, Peoples R China
[2] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[3] Guangdong Univ Petrochem Technol, Comp Sci Coll, Maoming 525000, Peoples R China
[4] Chinese Univ Hong Kong Shenzhen, Guangdong Prov Key Lab Big Data Comp, Shenzhen 518172, Peoples R China
基金
中国国家自然科学基金;
关键词
Inverse tone mapping; Improved residual block; Lightweight network; Inference efficiency;
D O I
10.1007/s11042-023-17811-7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The display devices like HDR10 televisions are increasingly prevalent in our daily life for visualizing high dynamic range (HDR) images. But the majority of media images on the internet remain in 8-bit standard dynamic range (SDR) format. Therefore, converting SDR images to HDR ones by inverse tone mapping (ITM) is crucial to unlock the full potential of abundant media images. However, existing ITM methods are usually developed with complex network architectures requiring huge computational costs. In this paper, we propose a lightweight Improved Residual Network (IRNet) by enhancing the power of popular residual block for efficient ITM. Specifically, we propose a new Improved Residual Block (IRB) to extract and fuse multi-layer features for fine-grained HDR image reconstruction. Experiments on three benchmark datasets demonstrate that our IRNet achieves state-of-the-art performance on both the ITM and joint SR-ITM tasks. The code, models and data will be publicly available at https://github.com/ThisisVikki/ITM-baseline.
引用
收藏
页码:67059 / 67082
页数:24
相关论文
共 50 条
  • [21] Lightweight Inverse Separable Residual Information Distillation Network for Image Super-Resolution Reconstruction
    Zhao X.
    Li X.
    Song Z.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2023, 36 (05): : 419 - 432
  • [22] Physiological inverse tone mapping based on retina response
    Huo, Yongqing
    Yang, Fan
    Dong, Le
    Brost, Vincent
    VISUAL COMPUTER, 2014, 30 (05): : 507 - 517
  • [23] Investigating Suitability of Inverse Tone Mapping for Medical Images
    Tohidypour, H. R.
    Wang, Y.
    Pourazad, M. T.
    Nasiopoulos, P.
    Zhao, D.
    Xie, M.
    Kamat, D.
    2023 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS, ICCE, 2023,
  • [24] FORENSIC DETECTION OF INVERSE TONE MAPPING IN HDR IMAGES
    Fan, Wei
    Valenzise, Giuseppe
    Banterle, Francesco
    Dufaux, Frederic
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 166 - 170
  • [25] Inverse Tone Mapping Based upon Retina Response
    Huo, Yongqing
    Yang, Fan
    Brost, Vincent
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [26] Inverse Tone Mapping High Dynamic Range Images
    Touil, Med Amine
    Ellouze, Noureddine
    2017 INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND DIAGNOSIS (ICCAD), 2017, : 338 - 342
  • [27] Revisiting the Stack-Based Inverse Tone Mapping
    Zhang, Ning
    Ye, Yuyao
    Zhao, Yang
    Wang, Ronggang
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 9162 - 9171
  • [28] Dodging and burning inspired inverse tone mapping algorithm
    Huo, Y. (hyq980132@uestc.edu.cn), 1600, Binary Information Press, P.O. Box 162, Bethel, CT 06801-0162, United States (09):
  • [29] Physiological inverse tone mapping based on retina response
    Yongqing Huo
    Fan Yang
    Le Dong
    Vincent Brost
    The Visual Computer, 2014, 30 : 507 - 517
  • [30] Fully-automatic inverse tone mapping algorithm based on dynamic mid-level tone mapping
    Luzardo, Gonzalo
    Aelterman, Jan
    Luong, Hiep
    Rousseaux, Sven
    Ochoa, Daniel
    Philips, Wilfried
    APSIPA TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING, 2020, 9