Transdermal on-demand drug delivery based on an iontophoretic hollow microneedle array system

被引:13
|
作者
Detamornrat, Usanee [1 ]
Parrilla, Marc [1 ,2 ,3 ]
Dominguez-Robles, Juan [1 ]
Anjani, Qonita Kurnia [1 ]
Larraneta, Eneko [1 ]
De Wael, Karolien [2 ,3 ]
Donnelly, Ryan F. [1 ]
机构
[1] Queens Univ Belfast, Med Biol Ctr, Sch Pharm, 97 Lisburn Rd, Belfast BT9 7BL, Antrim, North Ireland
[2] Univ Antwerp, Dept Biosci Engn, A Sense Lab, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
[3] Univ Antwerp, NANOlab Ctr Excellence, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
基金
英国科研创新办公室; 英国工程与自然科学研究理事会;
关键词
POLYMER MICRONEEDLES; DRIVEN; MODEL;
D O I
10.1039/d3lc00160a
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Transdermal drug delivery has emerged as an alternative administration route for therapeutic drugs, overcoming current issues in oral and parenteral administration. However, this technology is hindered by the low permeability of the stratum corneum of the skin. In this work, we develop a synergic combination of two enhancing technologies to contribute to an improved and on-demand drug delivery through an iontophoretic system coupled with hollow microneedles (HMNs). For the first time, a polymeric HMN array coupled with integrated iontophoresis for the delivery of charged molecules and macromolecules (e.g. proteins) is devised. To prove the concept, methylene blue, fluorescein sodium, lidocaine hydrochloride, and bovine serum albumin-fluorescein isothiocyanate conjugate (BSA-FITC) were first tested in an in vitro setup using 1.5% agarose gel model. Subsequently, the ex vivo drug permeation study using a Franz diffusion cell was conducted, exhibiting a 61-fold, 43-fold, 54-fold, and 17-fold increment of the permeation of methylene blue, fluorescein sodium, lidocaine hydrochloride, and BSA-FITC, respectively, during the application of 1 mA cm(-2) current for 6 h. Moreover, the total amount of drug delivered (i.e. in the skin and receptor compartment) was analysed to untangle the different delivery profiles according to the types of molecule. Finally, the integration of the anode and cathode into an iontophoretic hollow microneedle array system (IHMAS) offers the full miniaturisation of the concept. Overall, the IHMAS device provides a versatile wearable technology for transdermal on-demand drug delivery that can improve the administration of personalised doses, and potentially enhance precision medicine.
引用
收藏
页码:2304 / 2315
页数:12
相关论文
共 50 条
  • [31] A PZT insulin pump integrated with a silicon microneedle array for transdermal drug delivery
    Ma, Bin
    Liu, Sheng
    Gan, Zhiyin
    Liu, Guojun
    Cai, Xinxia
    Zhang, Honghai
    Yang, Zhigang
    [J]. MICROFLUIDICS AND NANOFLUIDICS, 2006, 2 (05) : 417 - 423
  • [32] A PZT insulin pump integrated with a silicon microneedle array for transdermal drug delivery
    Bin Ma
    Sheng Liu
    Zhiyin Gan
    Guojun Liu
    Xinxia Cai
    Honghai Zhang
    Zhigang Yang
    [J]. Microfluidics and Nanofluidics, 2006, 2 : 417 - 423
  • [33] Microneedle-Based Drug Delivery Systems for Transdermal Route
    Riemma Pierre, Maria Bernadete
    Rossetti, Fabia Cristina
    [J]. CURRENT DRUG TARGETS, 2014, 15 (03) : 281 - 291
  • [34] Universally applicable RNA membrane-based microneedle system for transdermal drug delivery
    Kim, Dajeong
    Kim, Hyejin
    Lee, Peter C. W.
    Lee, Jong Bum
    [J]. MATERIALS HORIZONS, 2020, 7 (05) : 1317 - 1326
  • [35] DISSOLVABLE-TIPPED, DRUG-RESERVOIR INTEGRATED MICRONEEDLE ARRAY FOR TRANSDERMAL DRUG DELIVERY
    Paik, Seung-Joon
    Kim, Seong-Hyok
    Wang, Po-Chun
    Wester, Brock A.
    Allen, Mark G.
    [J]. MEMS 2010: 23RD IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS, TECHNICAL DIGEST, 2010, : 312 - 315
  • [36] A novel 3D printed hollow microneedle microelectromechanical system for controlled, personalized transdermal drug delivery
    Economidou, Sophia N.
    Uddin, Md Jasim
    Marques, Manuel J.
    Douroumis, Dennis
    Sow, Wan Ting
    Li, Huaqiong
    Reid, Andrew
    Windmill, James F. C.
    Podoleanu, Adrian
    [J]. ADDITIVE MANUFACTURING, 2021, 38
  • [37] Hydrogel Microneedle Arrays for Transdermal Drug Delivery
    Xiaoyun Hong
    Zaozhan Wu
    Lizhu Chen
    Fei Wu
    Liangming Wei
    Weien Yuan
    [J]. Nano-Micro Letters, 2014, 6 (03) : 191 - 199
  • [38] Overview of microneedle system: a third generation transdermal drug delivery approach
    Nandagopal, M. S. Giri
    Antony, Rahul
    Rangabhashiyam, S.
    Sreekumar, Nidhin
    Selvaraju, N.
    [J]. MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2014, 20 (07): : 1249 - 1272
  • [39] Microneedle Coating Techniques for Transdermal Drug Delivery
    Haj-Ahmad, Rita
    Khan, Hashim
    Arshad, Muhammad Sohail
    Rasekh, Manoochehr
    Hussain, Amjad
    Walsh, Susannah
    Li, Xiang
    Chang, Ming-Wei
    Ahmad, Zeeshan
    [J]. PHARMACEUTICS, 2015, 7 (04): : 486 - 502
  • [40] Hydrogel Microneedle Arrays for Transdermal Drug Delivery
    Hong X.
    Wu Z.
    Chen L.
    Wu F.
    Wei L.
    Yuan W.
    [J]. Nano-Micro Letters, 2014, 6 (03) : 191 - 199