Long-term wind and solar energy generation forecasts, and optimisation of Power Purchase Agreements

被引:19
|
作者
Mesa-Jimenez, J. J. [1 ,2 ]
Tzianoumis, A. L. [3 ]
Stokes, L. [4 ]
Yang, Q. [1 ]
Livina, V. N. [2 ]
机构
[1] Brunel Univ London, Kingston Lane, Uxbridge, Middx, England
[2] Natl Phys Lab, Hampton Rd, Teddington, Middx, England
[3] City Univ London, Northampton Sq, London, England
[4] Mace Grp, 155 Moorgate, London, England
基金
英国工程与自然科学研究理事会;
关键词
Power purchase agreements; Markov chain Monte Carlo; Stochastic forecast; Renewable energy optimisation; PROBABILISTIC FORECASTS; SPEED; RADIATION; SYSTEM; MODEL;
D O I
10.1016/j.egyr.2022.11.175
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Due to more affordable solar and wind power, and the European Union regulations for decarbonisation of the economy, more than 40% of the Fortune 500 companies have targets related to green energy. This is one of the main reasons why multi-technology Power-Purchase Agreements (PPAs) are becoming increasingly important. However, there are risks associated with the uncertainty and variable generation patterns in wind speed and solar radiation. Moreover, there are challenges to predict intermittent wind and solar generation for the forecasting horizon required by PPAs, which is usually of several years. We propose a long-term wind and solar energy generation forecasts suitable for PPAs with cost optimisation in energy generation scenarios. We use Markov Chain Monte Carlo simulations with suitable models of wind and solar generation and optimise long-term energy contracts with purchase of renewable energy.(c) 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:292 / 302
页数:11
相关论文
共 50 条
  • [31] Long-Term System Operational Impacts of Wind Generation Penetration in Ontario Power System
    El-Mazariky, Amr
    Bhattacharya, Kankar
    Nathwani, Jatin
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON SMART ENERGY GRID ENGINEERING (SEGE), 2013,
  • [32] Long-term power-to-gas potential from wind and solar power: A country analysis for Italy
    Guandalini, G.
    Robinius, M.
    Grube, T.
    Campanari, S.
    Stolten, D.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (19) : 13389 - 13406
  • [33] A Statistical Modeling Methodology for Long-Term Wind Generation and Power Ramp Simulations in New Generation Locations
    Ekstrom, Jussi
    Koivisto, Matti
    Mellin, Ilkka
    Millar, Robert John
    Lehtonen, Matti
    [J]. ENERGIES, 2018, 11 (09)
  • [34] Long-term evolution of the solar wind transition region
    Lotova, N.A.
    Vladimirskij, K.V.
    Korelov, O.A.
    [J]. Izvestiya Vysshikh Uchebnykh Zavedenii. Seriya Radiofizika, 39 (11-12): : 1473 - 1478
  • [35] Geospatial optimisation of wind and solar energy generation: A framework for optimised resource allocation
    van Staden, Chantelle Y.
    Vermeulen, Hendrik J.
    [J]. SUSTAINABLE ENERGY GRIDS & NETWORKS, 2024, 39
  • [36] LONG-TERM TRENDS IN THE SOLAR WIND PROTON MEASUREMENTS
    Elliott, Heather A.
    McComas, David J.
    DeForest, Craig E.
    [J]. ASTROPHYSICAL JOURNAL, 2016, 832 (01):
  • [37] SOLAR-CYCLE AND LONG-TERM CHANGES IN THE SOLAR-WIND
    FEYNMAN, J
    [J]. REVIEWS OF GEOPHYSICS, 1983, 21 (02) : 338 - 348
  • [38] Wind forecasts for wind power generation using the Eta model
    Lazic, Lazar
    Pejanovic, Goran
    Zivkovic, Momcilo
    [J]. RENEWABLE ENERGY, 2010, 35 (06) : 1236 - 1243
  • [39] Sub-seasonal forecasts of demand and wind power and solar power generation for 28 European countries
    Bloomfield, Hannah C.
    Brayshaw, David J.
    Gonzalez, Paula L. M.
    Charlton-Perez, Andrew
    [J]. EARTH SYSTEM SCIENCE DATA, 2021, 13 (05) : 2259 - 2274
  • [40] Generation of Short-term Wind Power Scenarios from an Ensemble of Hourly Wind Speed Forecasts
    Pessanha, J. F. M.
    Melo, A. C. G.
    Maceira, M. E. P.
    Almeida, V. A.
    [J]. 2022 17TH INTERNATIONAL CONFERENCE ON PROBABILISTIC METHODS APPLIED TO POWER SYSTEMS (PMAPS), 2022,