Giant electrically tunable magnon transport anisotropy in a van der Waals antiferromagnetic insulator

被引:19
|
作者
Qi, Shaomian [1 ]
Chen, Di [2 ]
Chen, Kangyao [1 ]
Liu, Jianqiao [1 ]
Chen, Guangyi [1 ]
Luo, Bingcheng [1 ]
Cui, Hang [1 ]
Jia, Linhao [1 ,2 ]
Li, Jiankun [2 ]
Huang, Miaoling [2 ]
Song, Yuanjun [2 ]
Han, Shiyi [3 ]
Tong, Lianming [3 ]
Yu, Peng [4 ]
Liu, Yi [5 ]
Wu, Hongyu [6 ]
Wu, Shiwei [7 ]
Xiao, Jiang [7 ]
Shindou, Ryuichi [1 ]
Xie, X. C. [1 ,8 ]
Chen, Jian-Hao [1 ,2 ,8 ,9 ]
机构
[1] Peking Univ, Int Ctr Quantum Mat, Sch Phys, Beijing, Peoples R China
[2] Beijing Acad Quantum Informat Sci, Beijing, Peoples R China
[3] Peking Univ, Coll Chem & Mol Engn, Beijing, Peoples R China
[4] Sun Yat sen Univ, Sch Mat Sci & Engn, State Key Lab Optoelect Mat & Technol, Guangzhou, Peoples R China
[5] Beijing Normal Univ, Ctr Adv Quantum Studies, Dept Phys, Beijing, Peoples R China
[6] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Key Lab Magnet Mat & Devices, Zhejiang Prov Key Lab Magnet Mat & Applicat Techno, Ningbo, Peoples R China
[7] Fudan Univ, Dept Phys, State Key Lab Surface Phys, Shanghai, Peoples R China
[8] Hefei Natl Lab, Hefei, Peoples R China
[9] Peking Univ, Key Lab Phys & Chem Nanodevices, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1038/s41467-023-38172-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Anisotropy is a manifestation of lowered symmetry in material systems that have profound fundamental and technological implications. For van der Waals magnets, the two-dimensional (2D) nature greatly enhances the effect of in-plane anisotropy. However, electrical manipulation of such anisotropy as well as demonstration of possible applications remains elusive. In particular, in-situ electrical modulation of anisotropy in spin transport, vital for spintronics applications, has yet to be achieved. Here, we realized giant electrically tunable anisotropy in the transport of second harmonic thermal magnons (SHM) in van der Waals anti-ferromagnetic insulator CrPS4 with the application of modest gate current. Theoretical modeling found that 2D anisotropic spin Seebeck effect is the key to the electrical tunability. Making use of such large and tunable anisotropy, we demonstrated multi-bit read-only memories (ROMs) where information is inscribed by the anisotropy of magnon transport in CrPS4. Our result unveils the potential of anisotropic van der Waals magnons for information storage and processing. The anisotropic electrical and optical response of materials has allowed for the development of variety of sensors, memories and other interesting devices. Here, Qi et al turn their attention to the van der Waals antiferromagnetic insulator CrPS4, and demonstrate a very large, electrically tunable anisotropy in magnon transport, and present a multibit read-only memory based on this anisotropy.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Long-distance magnon transport in the van der Waals antiferromagnet CrPS4
    de Wal, Dennis K.
    Iwens, Arnaud
    Liu, Tian
    Tang, Ping
    Bauer, Gerrit E. W.
    van Wees, Bart J.
    PHYSICAL REVIEW B, 2023, 107 (18)
  • [32] Electrically Tunable Strong Exciton Resonance of Second Harmonic Generation in van der Waals Heterostructures
    Wu, Hongjian
    Chen, Haitao
    Han, Jinsen
    Xiao, Yang
    Yuan, Xiaoming
    Kang, Dongdong
    Zhu, Mengjian
    Zhu, Zhihong
    Qin, Shiqiao
    Dai, Jiayu
    ADVANCED OPTICAL MATERIALS, 2025,
  • [33] Ferroelectric antiferromagnetic quantum anomalous Hall insulator in two-dimensional van der Waals materials
    Liang, Yan
    Zhao, Pei
    Zheng, Fulu
    Frauenheim, Thomas
    PHYSICAL REVIEW B, 2024, 110 (20)
  • [34] Giant in-plane vibrational and transport anisotropy in van der Waals Ta2Ni3Te5
    Tan, Haige
    Zhang, Ying
    Zhao, Zhisheng
    Wang, Changlong
    Zhang, Ranran
    Wang, Shasha
    Ma, Xiang
    Feng, Yan
    Gu, Meng
    Lu, Yalin
    Jiang, Juan
    Zhang, Shunhong
    Xiang, Bin
    SCIENCE CHINA-MATERIALS, 2024, 67 (07) : 2201 - 2209
  • [35] Magnon spin transport in the van der Waals antiferromagnet CrPS4 for noncollinear and collinear magnetization
    de Wal, Dennis K.
    Zohaib, Muhammad
    van Wees, Bart J.
    PHYSICAL REVIEW B, 2024, 110 (17)
  • [36] Giant Magnetic Anisotropy in the Atomically Thin van der Waals Antiferromagnet FePS3
    Lee, Youjin
    Son, Suhan
    Kim, Chaebin
    Kang, Soonmin
    Shen, Junying
    Kenzelmann, Michel
    Delley, Bernard
    Savchenko, Tatiana
    Parchenko, Sergii
    Na, Woongki
    Choi, Ki-Young
    Kim, Wondong
    Cheong, Hyeonsik
    Derlet, Peter M.
    Kleibert, Armin
    Park, Je-Geun
    ADVANCED ELECTRONIC MATERIALS, 2023, 9 (02)
  • [37] Gate-tunable giant tunneling electroresistance in van der Waals ferroelectric tunneling junctions
    Wang, Qinqin
    Xie, Ti
    Blumenschein, Nicholas A.
    Song, Zhihao
    Hanbicki, Aubrey T.
    Susner, Michael A.
    Conner, Benjamin S.
    Low, Tony
    Wang, Jian-Ping
    Friedman, Adam L.
    Gong, Cheng
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2022, 283
  • [38] Electrically tunable band gap in strained h-BN/silicene van der Waals heterostructures
    de Vargas, Douglas D.
    Kohler, Mateus H.
    Baierle, Rogerio J.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (31) : 17033 - 17040
  • [39] Controlling the anisotropy of a van der Waals antiferromagnet with light
    Afanasiev, Dmytro
    Hortensius, Jorrit R.
    Matthiesen, Mattias
    Manas-Valero, Samuel
    Siskins, Makars
    Lee, Martin
    Lesne, Edouard
    van Der Zant, Herre S. J.
    Steeneken, Peter G.
    Ivanov, Boris A.
    Coronado, Eugenio
    Caviglia, Andrea D.
    SCIENCE ADVANCES, 2021, 7 (23)
  • [40] Magnon-exciton proximity coupling at a van der Waals heterointerface
    Gloppe, A.
    Onga, M.
    Hisatomi, R.
    Imamoglu, A.
    Nakamura, Y.
    Iwasa, Y.
    Usami, K.
    PHYSICAL REVIEW B, 2022, 105 (12)