Integrative transcriptomic, metabolomic and physiological analyses revealed the physiological and molecular mechanisms by which potassium regulates the salt tolerance of cotton (Gossypium hirsutum L.) roots

被引:18
|
作者
Ju, Feiyan [1 ,2 ]
Pang, Jiali [1 ,2 ]
Sun, Liyuan [1 ,2 ]
Gu, Jiajia [1 ,2 ]
Wang, Zhuo [1 ,2 ]
Wu, Xinyu [1 ,2 ]
Ali, Saif [3 ]
Wang, Youhua [1 ,2 ]
Zhao, Wenqing [1 ,2 ]
Wang, Shanshan [1 ,2 ]
Zhou, Zhiguo [1 ,2 ]
Chen, Binglin [1 ,2 ]
机构
[1] Nanjing Agr Univ, Coll Agr, Nanjing 210095, Peoples R China
[2] Collaborat Innovat Ctr Modern Crop Prod Cosponsor, Nanjing 210095, Peoples R China
[3] Ctr Agr & Biosci Int CABI, Rawalpindi, Pakistan
基金
中国国家自然科学基金;
关键词
Cotton; Salt stress; Potassium; Plant hormone; Ion homeostasis; Antioxidant balance; IMPROVES SALINITY TOLERANCE; INDUCED OXIDATIVE STRESS; JASMONIC ACID; ION HOMEOSTASIS; NA+-EXCLUSION; PLANT-GROWTH; ARABIDOPSIS; ACCUMULATION; TRANSPORT; RESPONSES;
D O I
10.1016/j.indcrop.2022.116177
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Cotton is a valuable industrial fiber-producing crop. However, soil salinization has brought serious yield and economic losses to cotton production. Appropriate application of potassium can improve the salt tolerance of crops and reduce salt damage, but the regulatory mechanism of potassium improves cotton adaptability to salt stress is still limited. In this study, transcriptome and metabolome analyses were performed on cotton roots treated with C (0 mM NaCl), S (150 mM NaCl) and SK (150 mM NaCl + 9.38 mM K2SO4), and verified by physiological indexes. The results showed that ion transport, hormone metabolism and reactive oxygen species (ROS) scavenging pathways played important roles in cotton root adaptation to salt stress. Salt stress caused oxidative damage and ion toxicity in cotton roots by disrupting hormone homeostasis and down-regulating the expression of potassium transporter and antioxidase-related genes. However, appropriate application of potassium alleviated the damage of salt stress on cotton by maintaining hormone and ion homeostasis and promoting the removal of ROS. In this study, the key biological pathways, regulatory genes and metabolites of potassium regulating cotton root adaptation to salt stress were determined, and the regulatory network diagram of genemetabolite interactions was constructed, which provides a new insight into the complex mechanism of potassium regulates salt adaptation in cotton and other crops, and will promote the progress of cotton genetic improvement and cultivation techniques.
引用
收藏
页数:17
相关论文
共 45 条
  • [41] Unraveling physiological, biochemical and molecular mechanisms involved in olive (Olea europaea L. cv. Chetoui) tolerance to drought and salt stresses
    Ben Abdallah, Mariem
    Trupiano, Dalila
    Polzella, Antonella
    De Zio, Elena
    Sassi, Mauro
    Scaloni, Andrea
    Zarrouk, Mokhtar
    Ben Youssef, Nabil
    Scippa, Gabriella Stefania
    JOURNAL OF PLANT PHYSIOLOGY, 2018, 220 : 83 - 95
  • [42] Comparative physiological and full-length transcriptome analyses reveal the molecular mechanism of melatonin-mediated salt tolerance in okra (Abelmoschus esculentus L.)
    Zhan, Yihua
    Wu, Tingting
    Zhao, Xuan
    Wang, Zhanqi
    Chen, Yue
    BMC PLANT BIOLOGY, 2021, 21 (01)
  • [43] Comparative physiological and full-length transcriptome analyses reveal the molecular mechanism of melatonin-mediated salt tolerance in okra (Abelmoschus esculentus L.)
    Yihua Zhan
    Tingting Wu
    Xuan Zhao
    Zhanqi Wang
    Yue Chen
    BMC Plant Biology, 21
  • [44] Physiological and molecular analyses of seedlings of two Tunisian durum wheat (Triticum turgidum L. subsp Durum [Desf.]) varieties showing contrasting tolerance to salt stress
    Brini, Faical
    Amara, Imen
    Feki, Kaouther
    Hanin, Moez
    Khoudi, Habib
    Masmoudi, Khaled
    ACTA PHYSIOLOGIAE PLANTARUM, 2009, 31 (01) : 145 - 154
  • [45] Physiological and molecular analyses of seedlings of two Tunisian durum wheat (Triticum turgidum L. subsp. Durum [Desf.]) varieties showing contrasting tolerance to salt stress
    Faïçal Brini
    Imen Amara
    Kaouther Feki
    Moez Hanin
    Habib Khoudi
    Khaled Masmoudi
    Acta Physiologiae Plantarum, 2009, 31 : 145 - 154