Diversification dynamics of a common deep-sea octocoral family linked to the Paleocene-Eocene thermal maximum

被引:1
|
作者
Nunez-Flores, Monica [1 ,2 ,7 ]
Solorzano, Andres [3 ]
Avaria-Llautureo, Jorge [4 ]
Gomez-Uchida, Daniel [5 ]
Lopez-Gonzalez, Pablo J. [6 ]
机构
[1] Univ Catolica Maule, Ctr Invest Estudios Avanzados Maule Vicerrectoria, Talca, Chile
[2] Univ Catolica Maule, Fac Ciencias Basicas, Dept Biol & Quim, Lab Ecol Abejas, Talca, Chile
[3] Univ Catolica Maule, Fac Ciencias Basicas, Escuela Geol, Dept Biol & Quim, Talca, Chile
[4] Univ Reading, Sch Biol Sci, Reading, England
[5] Univ Concepcion, Fac Ciencias Nat & Oceanog, Dept Zool, Genom Ecol Evolut & Conservat Lab GEECLAB, Concepcion, Chile
[6] Univ Seville, Fac Biol, Dept Zool, Biodiversidad & Ecol Acuat, Reina Mercedes 6, Seville 41012, Spain
[7] Univ Catolica Maule, Ctr Invest Estudios Avanzados Maule, Ave San Miguel 3605, Talca, Chile
关键词
PETM; Diversification dynamics; Historical biogeography; Deep-sea; Southern Ocean; Primnoidae; EVOLUTIONARY DYNAMICS; R PACKAGE; MARINE BIODIVERSITY; DIVERSITY PATTERNS; SPECIES-DIVERSITY; GLOBAL PATTERNS; CARBON-CYCLE; OCEAN; CLIMATE; TIME;
D O I
10.1016/j.ympev.2023.107945
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The deep-sea has experienced dramatic changes in physical and chemical variables in the geological past. However, little is known about how deep-sea species richness responded to such changes over time and space. Here, we studied the diversification dynamics of one of the most diverse octocorallian families inhabiting deep sea benthonic environments worldwide and sustaining highly diverse ecosystems, Primnoidae. A newly dated species-level phylogeny was constructed to infer their ancestral geographic locations and dispersal rates initially. Then, we tested whether their global and regional (the Southern Ocean) diversification dynamics were mediated by dispersal rate and abiotic factors as changes in ocean geochemistry. Finally, we tested whether primnoids showed changes in speciation and extinction at discrete time points. Our results suggested primnoids likely originated in the southwestern Pacific Ocean during the Lower Cretaceous similar to 112 Ma, with further dispersal after the physical separation of continental landmasses along the late Mesozoic and Cenozoic. Only the speciation rate of the Southern Ocean primnoids showed a significant correlation to ocean chemistry. Moreover, the Paleocene-Eocene thermal maximum marked a significant increase in the diversification of primnoids at global and regional scales. Our results provide new perspectives on the macroevolutionary and biogeographic patterns of an ecologically important benthic organism typically found in deep-sea environments.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] The dynamics of global change at the Paleocene-Eocene thermal maximum: A data-model comparison
    Bralower, Timothy J.
    Meissner, Katrin J.
    Alexander, Kaitlin
    Thomas, Deborah J.
    [J]. GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2014, 15 (10): : 3830 - 3848
  • [32] Gigantism in unique biogenic magnetite at the Paleocene-Eocene Thermal Maximum
    Schumann, Dirk
    Raub, Timothy D.
    Kopp, Robert E.
    Guerquin-Kern, Jean-Luc
    Wu, Ting-Di
    Rouiller, Isabelle
    Smirnov, Aleksey V.
    Sears, S. Kelly
    Lucken, Uwe
    Tikoo, Sonia M.
    Hesse, Reinhard
    Kirschvink, Joseph L.
    Vali, Hojatollah
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (46) : 17648 - 17653
  • [33] What caused the long duration of the Paleocene-Eocene Thermal Maximum?
    Zeebe, Richard E.
    [J]. PALEOCEANOGRAPHY, 2013, 28 (03): : 440 - 452
  • [34] Mammal Community Structure through the Paleocene-Eocene Thermal Maximum
    Fraser, Danielle
    Lyons, S. Kathleen
    [J]. AMERICAN NATURALIST, 2020, 196 (03): : 271 - 290
  • [35] In situ δ18O and Mg/Ca analyses of diagenetic and planktic foraminiferal calcite preserved in a deep-sea record of the Paleocene-Eocene thermal maximum
    Kozdon, Reinhard
    Kelly, D. C.
    Kitajima, K.
    Strickland, A.
    Fournelle, J. H.
    Valley, J. W.
    [J]. PALEOCEANOGRAPHY, 2013, 28 (03): : 517 - 528
  • [36] Delays, Discrepancies, and Distortions: Size-Dependent Sediment Mixing and the Deep-Sea Record of the Paleocene-Eocene Thermal Maximum From ODP Site 690 (Weddell Sea)
    Hupp, Brittany
    Kelly, D. Clay
    [J]. PALEOCEANOGRAPHY AND PALEOCLIMATOLOGY, 2020, 35 (11)
  • [37] Early Eocene deep-sea benthic foraminiferal faunas: Recovery from the Paleocene Eocene Thermal Maximum extinction in a greenhouse world
    Arreguin-Rodriguez, Gabriela J.
    Thomas, Ellen
    D'haenens, Simon
    Speijer, Robert P.
    Alegret, Laia
    [J]. PLOS ONE, 2018, 13 (02):
  • [38] Sea-level and salinity fluctuations during the Paleocene-Eocene thermal maximum in Arctic Spitsbergen
    Harding, Ian C.
    Charles, Adam J.
    Marshall, John E. A.
    Paelike, Heiko
    Roberts, Andrew P.
    Wilson, Paul A.
    Jarvis, Edward
    Thorne, Robert
    Morris, Emily
    Moremon, Rebecca
    Pearce, Richard B.
    Akbari, Shir
    [J]. EARTH AND PLANETARY SCIENCE LETTERS, 2011, 303 (1-2) : 97 - 107
  • [39] Southern ocean warming, sea level and hydrological change during the Paleocene-Eocene thermal maximum
    Sluijs, A.
    Bijl, P. K.
    Schouten, S.
    Roehl, U.
    Reichart, G. -J.
    Brinkhuis, H.
    [J]. CLIMATE OF THE PAST, 2011, 7 (01) : 47 - 61
  • [40] Prolonged deep-ocean carbonate chemistry recovery after the Paleocene-Eocene Thermal Maximum
    Dai, Yuhao
    Yu, Jimin
    Ji, Xuan
    [J]. EARTH AND PLANETARY SCIENCE LETTERS, 2023, 620