On integer matrices with integer eigenvalues and Laplacian integral graphs

被引:1
|
作者
Barik, Sasmita [1 ]
Behera, Subhasish [1 ]
机构
[1] IIT Bhubaneswar, Sch Basic Sci, Bhubaneswar 752050, India
关键词
Integer matrix; Integer eigenvalues; Graph; Laplacian matrix; Threshold graph; SPECTRUM; CONJECTURE;
D O I
10.1016/j.disc.2023.113707
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A matrix A is said to be an integer matrix if all its entries are integers. In this article, we characterize the nonsingular integer matrices with integer eigenvalues in an expressible form of their corresponding inverse matrices. It is proved that a nonsingular integer matrix A has integer eigenvalues if and only if A(-1) can be written as the sum of n rank-one matrices that meet certain requirements. A method for constructing integer matrices with integer eigenvalues using the Hadamard product is also provided. Let S represent an n-tuple of nonnegative integers. If there is an n x n integer matrix A whose spectrum (the collection of eigenvalues) is S, we say that S is realisable by an integer matrix. In Fallat et al. (2005) [7], the authors posed a conjecture that "there is no simple graph on n >= 2 vertices whose Laplacian spectrum is given by (0, 1, ... , n - 1)." We provide a characterization of threshold graphs using the spectra of quotient matrices of its G-join graphs. As a consequence, we prove that given any n - 1 positive integers lambda(2), ... , lambda(n) such that lambda 2 < <middle dot><middle dot><middle dot> < lambda(n), the n-tuple (0, lambda(2), ..., lambda(n)) is realizable by the Laplacian matrix of a multidigraph. In particular, we show that (0, 1, ... , n -1) can be realizable by the Laplacian matrix of a multidigraph.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] COMPARISON OF STEKLOV EIGENVALUES AND LAPLACIAN EIGENVALUES ON GRAPHS
    Shi, Yongjie
    Yu, Chengjie
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (04) : 1505 - 1517
  • [42] LAPLACIAN MATRICES OF GRAPHS
    MOHAR, B
    MATH/CHEM/COMP 1988, 1989, 63 : 1 - 8
  • [43] Decision questions on integer matrices
    Harju, T
    DEVELOPMENTS IN LANGUAGE THEORY, 2002, 2295 : 57 - 68
  • [44] Vandermonde matrices on integer nodes
    Eisinberg, A
    Franze, G
    Pugliese, P
    NUMERISCHE MATHEMATIK, 1998, 80 (01) : 75 - 85
  • [45] Factorization of singular integer matrices
    Lenders, Patrick
    Xue, Jingling
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (04) : 1046 - 1055
  • [46] Periodic matrices with integer entries
    Hur, Injo
    Jo, Jang Hyun
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (11) : 4844 - 4852
  • [47] A Euclidean Algorithm for Integer Matrices
    Lauritzen, Niels
    Thomsen, Jesper Funch
    AMERICAN MATHEMATICAL MONTHLY, 2019, 126 (08): : 699 - 699
  • [48] Vandermonde matrices on integer nodes
    Alfredo Eisinberg
    Giuseppe Franzé
    Paolo Pugliese
    Numerische Mathematik, 1998, 80 : 75 - 85
  • [49] Exact Determinant of Integer Matrices
    Ogita, Takeshi
    REC 2010: PROCEEDINGS OF THE 4TH INTERNATIONAL WORKSHOP ON RELIABLE ENGINEERING COMPUTING: ROBUST DESIGN - COPING WITH HAZARDS, RISK AND UNCERTAINTY, 2010, : 186 - 196
  • [50] ON EIGENVALUE GAPS OF INTEGER MATRICES
    Abrams, Aaron
    Landau, Zeph
    Pommersheim, Jamie
    Srivastava, Nikhil
    MATHEMATICS OF COMPUTATION, 2024,