On integer matrices with integer eigenvalues and Laplacian integral graphs

被引:1
|
作者
Barik, Sasmita [1 ]
Behera, Subhasish [1 ]
机构
[1] IIT Bhubaneswar, Sch Basic Sci, Bhubaneswar 752050, India
关键词
Integer matrix; Integer eigenvalues; Graph; Laplacian matrix; Threshold graph; SPECTRUM; CONJECTURE;
D O I
10.1016/j.disc.2023.113707
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A matrix A is said to be an integer matrix if all its entries are integers. In this article, we characterize the nonsingular integer matrices with integer eigenvalues in an expressible form of their corresponding inverse matrices. It is proved that a nonsingular integer matrix A has integer eigenvalues if and only if A(-1) can be written as the sum of n rank-one matrices that meet certain requirements. A method for constructing integer matrices with integer eigenvalues using the Hadamard product is also provided. Let S represent an n-tuple of nonnegative integers. If there is an n x n integer matrix A whose spectrum (the collection of eigenvalues) is S, we say that S is realisable by an integer matrix. In Fallat et al. (2005) [7], the authors posed a conjecture that "there is no simple graph on n >= 2 vertices whose Laplacian spectrum is given by (0, 1, ... , n - 1)." We provide a characterization of threshold graphs using the spectra of quotient matrices of its G-join graphs. As a consequence, we prove that given any n - 1 positive integers lambda(2), ... , lambda(n) such that lambda 2 < <middle dot><middle dot><middle dot> < lambda(n), the n-tuple (0, lambda(2), ..., lambda(n)) is realizable by the Laplacian matrix of a multidigraph. In particular, we show that (0, 1, ... , n -1) can be realizable by the Laplacian matrix of a multidigraph.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] On graphs whose Laplacian matrices have distinct integer eigenvalues
    Fallat, SM
    Kirkland, SJ
    Molitierno, JJ
    Neumann, M
    JOURNAL OF GRAPH THEORY, 2005, 50 (02) : 162 - 174
  • [2] Integer Laplacian eigenvalues of chordal graphs
    Abreu, Nair
    Justel, Claudia Marcela
    Markenzon, Lilian
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 614 : 68 - 81
  • [3] MATRICES WITH INTEGER ENTRIES AND INTEGER EIGENVALUES
    RENAUD, JC
    AMERICAN MATHEMATICAL MONTHLY, 1983, 90 (03): : 202 - 203
  • [4] Strictly chordal graphs: Structural properties and integer Laplacian eigenvalues
    Abreu, Nair
    Justel, Claudia Marcela
    Markenzon, Lilian
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 682 : 351 - 362
  • [5] COMPANION MATRICES WITH INTEGER ENTRIES AND INTEGER EIGENVALUES AND EIGENVECTORS
    GILBERT, RC
    AMERICAN MATHEMATICAL MONTHLY, 1988, 95 (10): : 947 - 950
  • [6] Almost All Integer Matrices Have No Integer Eigenvalues
    Martin, Greg
    Wong, Erick B.
    AMERICAN MATHEMATICAL MONTHLY, 2009, 116 (07): : 588 - 597
  • [7] EIGENVALUES OF SYMMETRICAL INTEGER MATRICES
    ESTES, DR
    JOURNAL OF NUMBER THEORY, 1992, 42 (03) : 292 - 296
  • [8] Spanning trees and even integer eigenvalues of graphs
    Ghorbani, Ebrahim
    DISCRETE MATHEMATICS, 2014, 324 : 62 - 67
  • [9] A note on the integer eigenvalues of the Laplacian matrix of a balanced binary tree
    Rojo, O
    Peña, M
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 362 : 293 - 300
  • [10] On the Eigenvalues and Energy of the Seidel and Seidel Laplacian Matrices of Graphs
    Askari, J.
    Das, Kinkar Chandra
    Shang, Yilun
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2024, 2024