PPNet : pooling position attention network for semantic segmentation

被引:0
|
作者
Xu, Haixia [1 ]
Wang, Wei [1 ]
Wang, Shuailong [1 ]
Zhou, Wei [1 ]
Chen, Qi [1 ]
Peng, Wei [1 ]
机构
[1] XiangTan Univ, Sch Automat & Elect Informat, Xiangtan, Peoples R China
关键词
Semantic segmentation network; Attention module; PCAM-; PPAM;
D O I
10.1007/s11042-023-16230-y
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Semantic segmentation with attention module has made great progress in many computer vision tasks. However, attention modules ignore some boundary information. To explore a more comprehensive map of context features, we propose a pooling position attention network (PPNet) for semantic segmentation. Based on the Encoder-Decoder structure, we import attention modules into the encoder to enhance the correlation between deep information. Pooling cross attention module (PCAM) aims to weight deep semantic information and expands the feature recognition area, and pooling position attention module (PPAM) calculates the weighted features to generate features with strong semantic information. Finally, the enhanced deep features and shallow features are fused by decoder to enhance the dependency between pixels and to achieve better semantic segmentation. Experiments show that of our proposed PPNet is superior to other state-of-the-art models in the performance of segmentation accuracy on datasets PACSCAL VOC 2012 and Cityscapes.
引用
收藏
页码:37007 / 37023
页数:17
相关论文
共 50 条
  • [31] DPRA: a dual pooling attention network for point cloud classification and segmentation
    Wen, Junxian
    Wang, Xiaolong
    Zhu, Zhijie
    Zhang, Jinsong
    ENGINEERING RESEARCH EXPRESS, 2025, 7 (01):
  • [32] Fusion Attention Network for Autonomous Cars Semantic Segmentation
    Wang, Chuyao
    Aouf, Nabil
    2022 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2022, : 1525 - 1530
  • [33] An Attention Enhanced Graph Convolutional Network for Semantic Segmentation
    Chen, Ao
    Zhou, Yue
    PATTERN RECOGNITION AND COMPUTER VISION, PT I, PRCV 2020, 2020, 12305 : 734 - 745
  • [34] Multiple-Attention Mechanism Network for Semantic Segmentation
    Wang, Dongli
    Xiang, Shengliang
    Zhou, Yan
    Mu, Jinzhen
    Zhou, Haibin
    Irampaye, Richard
    SENSORS, 2022, 22 (12)
  • [35] Lightweight Self-Attention Network for Semantic Segmentation
    Zhou, Yan
    Zhou, Haibin
    Li, Nanjun
    Li, Jianxun
    Wang, Dongli
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [36] HANA: Hierarchical Attention Network Assembling for Semantic Segmentation
    Wei Liu
    Ding Li
    Hongqi Su
    Cognitive Computation, 2021, 13 : 1128 - 1135
  • [37] TCNet: tensor and covariance attention network for semantic segmentation
    Xu, Haixia
    Liu, Yanbang
    Wang, Wei
    Zhou, Wei
    Ding, Fanxun
    Han, Feng
    Peng, Wei
    SOFT COMPUTING, 2024, 28 (11-12) : 7575 - 7585
  • [38] Polarized Attention Weak Supervised Semantic Segmentation Network
    Dai, Min
    Wu, Donghang
    Dawei, Yang
    IEEE ACCESS, 2024, 12 : 53965 - 53973
  • [39] Point attention network for point cloud semantic segmentation
    Dayong REN
    Zhengyi WU
    Jiawei LI
    Piaopiao YU
    Jie GUO
    Mingqiang WEI
    Yanwen GUO
    Science China(Information Sciences), 2022, 65 (09) : 99 - 112
  • [40] Point attention network for point cloud semantic segmentation
    Ren, Dayong
    Wu, Zhengyi
    Li, Jiawei
    Yu, Piaopiao
    Guo, Jie
    Wei, Mingqiang
    Guo, Yanwen
    SCIENCE CHINA-INFORMATION SCIENCES, 2022, 65 (09)