Data-driven crash prediction by injury severity using a recurrent neural network model based on Keras framework

被引:1
|
作者
Zuo, Dajie [1 ]
Qian, Cheng [2 ]
Xiao, Daiquan [3 ]
Xu, Xuecai [3 ]
Wang, Hui [4 ]
机构
[1] Southwest Jiaotong Univ, Sch Transportat & Logist, Chengdu, Peoples R China
[2] Shanghai Municipal Engn Design Inst Grp Co Ltd, Shanghai, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Civil & Hydraul Engn, Wuhan, Peoples R China
[4] Wuhan Huake Quanda Transport Planning & Design Con, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
Injury severity prediction; deep learning; clustering algorithm; OPTICS; recurrent neural network;
D O I
10.1080/17457300.2023.2239211
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
With the development of big data technology and the improvement of deep learning technology, data-driven and machine learning application have been widely employed. By adopting the data-driven machine learning method, with the help of clustering processing of data sets, a recurrent neural network (RNN) model based on Keras framework is proposed to predict the injury severity in urban areas. First, with crash data from 2014 to 2017 in Nevada, OPTICS clustering algorithm is employed to extract the crash injury in Las Vegas. Next, by virtue of Keras' high efficiency and strong scalability, the parameters of loss function, activation function and optimizer of the deep learning model are determined to realize the training of the model and the visualization of the training results, and the RNN model is constructed. Finally, on the basis of training and testing data, the model can predict the injury severity with high accuracy and high training speed. The results provide an alternative and some potential insights on the injury severity prediction.
引用
收藏
页码:561 / 570
页数:10
相关论文
共 50 条
  • [21] Comparative Study of Mortality Rate Prediction Using Data-Driven Recurrent Neural Networks and the Lee-Carter Model
    Chen, Yuan
    Khaliq, Abdul Q. M.
    BIG DATA AND COGNITIVE COMPUTING, 2022, 6 (04)
  • [22] Data-driven derivation of partial differential equations using neural network model
    Koyamada, Koji
    Long, Yu
    Kawamura, Takuma
    Konishi, Katsumi
    INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2021, 12 (02)
  • [23] Data-Driven Remaining Useful Life Prediction for Lithium-Ion Batteries Using Multi-Charging Profile Framework: A Recurrent Neural Network Approach
    Ansari, Shaheer
    Ayob, Afida
    Hossain Lipu, Molla Shahadat
    Hussain, Aini
    Saad, Mohamad Hanif Md
    SUSTAINABILITY, 2021, 13 (23)
  • [24] A novel construction method of convolutional neural network model based on data-driven
    Zou, Guo-feng
    Fu, Gui-xia
    Gao, Ming-liang
    Shen, Jin
    Yin, Li-ju
    Ben, Xian-ye
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (06) : 6969 - 6987
  • [25] Towards an Artificial Intelligence Framework for Data-Driven Prediction of Coronavirus Clinical Severity
    Jiang, Xiangao
    Coffee, Megan
    Bari, Anasse
    Wang, Junzhang
    Jiang, Xinyue
    Huang, Jianping
    Shi, Jichan
    Dai, Jianyi
    Cai, Jing
    Zhang, Tianxiao
    Wu, Zhengxing
    He, Guiqing
    Huang, Yitong
    CMC-COMPUTERS MATERIALS & CONTINUA, 2020, 63 (01): : 537 - 551
  • [26] A novel construction method of convolutional neural network model based on data-driven
    Guo-feng Zou
    Gui-xia Fu
    Ming-liang Gao
    Jin Shen
    Li-ju Yin
    Xian-ye Ben
    Multimedia Tools and Applications, 2019, 78 : 6969 - 6987
  • [27] A Crash Severity Prediction Method Based on Improved Neural Network and Factor Analysis
    Zhang, Chen
    He, Jie
    Wang, Yinhai
    Yan, Xintong
    Zhang, Changjian
    Chen, Yikai
    Liu, Ziyang
    Zhou, Bojian
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2020, 2020
  • [28] An Efficient Data-Driven Traffic Prediction Framework for Network Digital Twin
    Nan, Haihan
    Li, Ruidong
    Zhu, Xiaoyan
    Ma, Jianfeng
    Niyato, Dusit
    IEEE NETWORK, 2024, 38 (01): : 22 - 29
  • [29] A Data-Driven Neural Network Approach for Remaining Useful Life Prediction
    Yan, Jihong
    Guo, Chaozhong
    Wang, Xing
    Zhao, Debin
    ADVANCED DESIGN AND MANUFACTURE III, 2011, 450 : 544 - 547
  • [30] A Ship Trajectory Prediction Framework Based on a Recurrent Neural Network
    Suo, Yongfeng
    Chen, Wenke
    Claramunt, Christophe
    Yang, Shenhua
    SENSORS, 2020, 20 (18) : 1 - 21