Toward establishing a knowledge graph for drought disaster based on ontology design and named entity recognition

被引:3
|
作者
Fang, Yihui [1 ,2 ]
Zhang, Dejian [3 ]
Wu, Guoxiang [1 ,2 ]
机构
[1] Fujian Business Univ, Sch Informat Engn, Fuzhou, Fujian, Peoples R China
[2] Fujian Prov Univ, Engn Res Ctr Big Data Analyt Business Intelligence, Fuzhou, Fujian, Peoples R China
[3] Xiamen Univ Technol, Sch Comp & Informat Engn, Xiamen, Fujian, Peoples R China
关键词
corpus construction; deep learning; drought disaster; knowledge graph; named entity recognition; ontology design;
D O I
10.2166/hydro.2023.046
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Drought disasters have caused serious impacts on the social economy and ecological environment, which are continuously and increasingly exacerbated by climate warming and other factors. Drought disaster management usually involves processing a mass of isolated data from many fields expressed in different terminologies and formats. These heterogeneous data or so-called data silos have greatly hindered drought disaster management in an information-rich manner. Establishing a drought disaster knowledge graph can facilitate the reuse of these heterogeneous data and provide references for drought disaster management, and ontology design and named entity recognition are the two major challenges. Therefore, in this study, we first designed a drought disaster ontology by recognizing the major concepts in the drought disaster field and their relationships, which was implemented with an ontology modeling language. We next constructed a drought disaster corpus and an integrated entity recognition model that was built by integrating multiple deep learning methods. Finally, we applied the integrated entity recognition model to extract information from the Chinese knowledge information gateway (CNKI) literature database. The integrated model shows satisfactory results in drought disaster named entity recognition. We thus conclude that combining ontology and deep learning technology toward establishing a knowledge graph for drought disasters is promising.
引用
收藏
页码:1457 / 1470
页数:14
相关论文
共 50 条
  • [21] Faster biomedical named entity recognition based on knowledge distillation
    Hu B.
    Geng T.
    Deng G.
    Duan L.
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2021, 61 (09): : 936 - 942
  • [22] Medical Named Entity Recognition Model Based on Knowledge Graph Enhancement (vol 38, 2450004, 2024)
    Lu, Yonghe
    Zhao, Ruijie
    Wen, Xiuxian
    Tong, Xinyu
    Xiang, Dingcheng
    Zhang, Jinxia
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2024, 38 (11)
  • [23] Robust Chinese Named Entity Recognition Based on Fusion Graph Embedding
    Song, Xuhui
    Yu, Hongtao
    Li, Shaomei
    Wang, Huansha
    ELECTRONICS, 2023, 12 (03)
  • [24] Chinese Named Entity Recognition Based on Gated Graph Neural Network
    Zhong, Qing
    Tang, Yan
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, 2021, 12815 : 604 - 613
  • [25] Social Media Named Entity Recognition Based On Graph Attention Network
    Zhang, Wei
    Luo, Jianying
    Yang, Kehua
    2021 INTERNATIONAL SYMPOSIUM ON COMPUTER SCIENCE AND INTELLIGENT CONTROLS (ISCSIC 2021), 2021, : 127 - 131
  • [26] Study on Named Entity Recognition Based on Graph Convolutional Neural Network
    Fan, Liping
    Huang, Ying
    Du, Fengyi
    Huang, Yu
    Liu, Yunfei
    Yu, Xiaosheng
    PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON FRONTIERS OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING, FAIML 2024, 2024, : 300 - 304
  • [27] Leverage Lexical Knowledge for Chinese Named Entity Recognition via Collaborative Graph Network
    Sui, Dianbo
    Chen, Yubo
    Liu, Kang
    Zhao, Jun
    Liu, Shengping
    2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019): PROCEEDINGS OF THE CONFERENCE, 2019, : 3830 - 3840
  • [28] DOZEN: Cross-Domain Zero Shot Named Entity Recognition with Knowledge Graph
    Nguyen, Hoang Van
    Gelli, Francesco
    Poria, Soujanya
    SIGIR '21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2021, : 1642 - 1646
  • [29] Medical Named Entity Recognition with Domain Knowledge
    Pei W.
    Sun S.
    Li X.
    Lu J.
    Yang L.
    Wu Y.
    Data Analysis and Knowledge Discovery, 2023, 7 (03) : 142 - 154
  • [30] A Research Toward Chinese Named Entity Recognition Based on Transfer Learning
    Hui Kang
    Jingwu Xiao
    Yunpeng Zhang
    Lei Zhang
    Xu Zhao
    Tie Feng
    International Journal of Computational Intelligence Systems, 16