An integrated simulation model towards laser powder bed fusion in-situ alloying technology

被引:12
|
作者
Hou, Yaqing [1 ]
Su, Hang [1 ]
Zhang, Hao [1 ,2 ]
Li, Fafa [1 ]
Wang, Xuandong [1 ]
He, Yazhou [1 ]
He, Dupeng [1 ]
机构
[1] China Iron & Steel Res Inst Grp, Mat Digital R&D Ctr, Beijing 100081, Peoples R China
[2] Hangzhou Dedibot Intelligent Technol Co Ltd, Hangzhou 310000, Peoples R China
关键词
Laser powder bed fusion in-situ alloying; Selective laser melting; CALPHAD; Medium entropy alloy; Integrated calculation; MICROSTRUCTURE; BEHAVIOR; FIELD;
D O I
10.1016/j.matdes.2023.111795
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The Laser Powder Bed Fusion (LPBF) in-situ alloying is a novel technology for preparing novel alloys effi-ciently. However, the narrow process window limit its application. A micro-scale integrated simulation model is designed and constructed based on the Discrete Element Method (DEM), the Finite Element Method (FEM), and Calculation of phase diagram (CALPHAD) method in the work. The equation of the methods are introduced. By defining the parameters such as composition inhomogeneity x, the forming performance of LPBF in-situ alloying FeCoCrNi medium entropy alloys are predicted. The calculation results show that the hysteresis diffusion effect makes the mixing powders more challenging to be in -situ alloyed than conventional main component alloys. For the mixed powder beds consisting of 15- 53 lm particles with equal mass ratio, the composition deviation on the micro-scale is within 2.5%, and the composition homogeneity reaches 98.9 %. Under a laser power of 150 W and a scanning speed of 500 mm/s, several laser remelting process are indispensable to eliminate unmelted elements. Experiments are carried out to verify the accuracy of the integrated simulation model, and the high-efficiency preparation experiment of non-equiatomic ratio medium entropy alloy was carried out by using the technology.(c) 2023 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:16
相关论文
共 50 条
  • [41] In-situ monitoring of laser-based powder bed fusion using fringe projection
    Remani, Afaf
    Rossi, Arianna
    Pena, Fernando
    Thompson, Adam
    Dardis, John
    Jones, Nick
    Senin, Nicola
    Leach, Richard
    ADDITIVE MANUFACTURING, 2024, 90
  • [42] In-situ sensing, process monitoring and machine control in Laser Powder Bed Fusion: A review
    McCann, Ronan
    Obeidi, Muhannad A.
    Hughes, Cian
    McCarthy, Eanna
    Egan, Darragh S.
    Vijayaraghavan, Rajani K.
    Joshi, Ajey M.
    Garzon, Victor Acinas
    Dowling, Denis P.
    McNally, Patrick J.
    Brabazon, Dermot
    ADDITIVE MANUFACTURING, 2021, 45
  • [43] In-situ alloying laser powder bed fusion of Ni-Mn-Ga magnetic shape memory alloy using liquid Ga
    Milleret, Anastassia
    Laitinen, Ville
    Ullakko, Kari
    Fenineche, Nouredine
    Attallah, Moataz M.
    PROGRESS IN ADDITIVE MANUFACTURING, 2024, 9 (06) : 2363 - 2373
  • [44] In-Situ Characterization of Pore Formation Dynamics in Pulsed Wave Laser Powder Bed Fusion
    Hojjatzadeh, S. Mohammad H.
    Guo, Qilin
    Parab, Niranjan D.
    Qu, Minglei
    Escano, Luis, I
    Fezzaa, Kamel
    Everhart, Wes
    Sun, Tao
    Chen, Lianyi
    MATERIALS, 2021, 14 (11)
  • [45] Quasi In-Situ Study of Microstructure in a Laser Powder Bed Fusion Martensitic Stainless Steel
    Shahriari, Ayda
    Sanjari, Mehdi
    Mahmoudiniya, Mahdi
    Pirgazi, Hadi
    Amirkhiz, Babak Shalchi
    Kestens, Leo A. I.
    Mohammadi, Mohsen
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2024, 55 (05): : 1302 - 1310
  • [46] An Image Segmentation Framework for In-Situ Monitoring in Laser Powder Bed Fusion Additive Manufacturing
    Xie, Jason
    Jiang, Tianyu
    Chen, Xu
    IFAC PAPERSONLINE, 2022, 55 (37): : 800 - 806
  • [47] Nanocrystalline Ti-Al-Mo-Zr-Si Alloy (TC11) by Laser Powder Bed Fusion In-situ Alloying
    Ouyang, Xiao
    Dong, Yangping
    Wang, Dawei
    Wu, Zhongzhen
    Tian, Yanhong
    Yan, M.
    ADVANCED ENGINEERING MATERIALS, 2024, 26 (10)
  • [48] Evolution and prediction of lack of fusion pores in laser powder bed fusion process based on in-situ monitoring
    Li, Jiansen
    Zhang, Kai
    Liao, Wenhe
    Liu, Tingting
    Zou, Zhiyong
    Chen, Rong
    Wei, Huiliang
    MEASUREMENT, 2025, 245
  • [49] In Situ Alloying of a Modified Inconel 625 via Laser Powder Bed Fusion: Microstructure and Mechanical Properties
    Marchese, Giulio
    Beretta, Margherita
    Aversa, Alberta
    Biamino, Sara
    METALS, 2021, 11 (06)
  • [50] Experimental and Numerical Investigations of In Situ Alloying during Powder Bed Fusion of Metals Using a Laser Beam
    Wimmer, Andreas
    Yalvac, Baturay
    Zoeller, Christopher
    Hofstaetter, Fabian
    Adami, Stefan
    Adams, Nikolaus A.
    Zaeh, Michael F.
    METALS, 2021, 11 (11)