Simulations for Planning Next-generation Exoplanet Radial Velocity Surveys

被引:4
|
作者
Newman, Patrick D. [1 ]
Plavchan, Peter [1 ]
Burt, Jennifer A. [2 ]
Teske, Johanna [3 ]
Mamajek, Eric E. [2 ]
Leifer, Stephanie [4 ]
Gaudi, B. Scott [5 ]
Blackwood, Gary [2 ]
Morgan, Rhonda [2 ]
机构
[1] George Mason Univ, Dept Phys & Astron, 4400 Univ Dr,MSN 3F3, Fairfax, VA 22030 USA
[2] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
[3] Carnegie Inst Sci, Earth & Planets Lab, 5241 Broad Branch Rd,NW, Washington, DC 20015 USA
[4] Aerosp Corp, 200 S Robles Ave150, Pasadena, CA 91101 USA
[5] Ohio State Univ, Dept Astron, 140 W 18th Ave, Columbus, OH 43210 USA
来源
ASTRONOMICAL JOURNAL | 2023年 / 165卷 / 04期
基金
美国国家航空航天局;
关键词
PLANET-HOST STARS; STELLAR ACTIVITY; NEARBY STARS; SPECTROSCOPIC PARAMETERS; SPECTRAL CLASSIFICATION; EFFECTIVE TEMPERATURE; SOLAR NEIGHBORHOOD; HABITABLE-ZONE; NSTARS PROJECT; EVOLVED STARS;
D O I
10.3847/1538-3881/acad07
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Future direct imaging missions similar to the HabEx and LUVOIR mission concepts aim to catalog and characterize Earth-mass analogs around nearby stars. The exoplanet yield of these missions will be dependent on the frequency of Earth-like planets, and potentially the a priori knowledge of which stars specifically host suitable planetary systems. Ground- or space-based radial velocity surveys can potentially perform the pre-selection of targets and assist in the optimization of observation times, as opposed to an uninformed direct imaging survey. In this paper, we present our framework for simulating future radial velocity surveys of nearby stars in support of direct imaging missions. We generate lists of exposure times, observation time-series, and radial velocity time-series given a direct imaging target list. We generate simulated surveys for a proposed set of telescopes and precise radial velocity spectrographs spanning a set of plausible global-network architectures that may be considered for next-generation extremely precise radial velocity surveys. We also develop figures of merit for observation frequency and planet detection sensitivity, and compare these across architectures. From these, we draw conclusions, given our stated assumptions and caveats, to optimize the yield of future radial velocity surveys supporting direct imaging missions. We find that all of our considered surveys obtain sufficient numbers of precise observations to meet the minimum theoretical white noise detection sensitivity for Earth-mass habitable-zone planets. While our detection rates and mass-sensitivity are optimistic, we have margin to explore systematic effects due to stellar activity and correlated noise in future work.
引用
收藏
页数:39
相关论文
共 50 条
  • [31] Next-generation sequencing for next-generation breeding, and more
    Tsai, Chung-Jui
    NEW PHYTOLOGIST, 2013, 198 (03) : 635 - 637
  • [32] Next-generation sequencing of the next generation
    Darren J. Burgess
    Nature Reviews Genetics, 2011, 12 : 78 - 79
  • [33] Methods for rapidly processing angular masks of next-generation galaxy surveys
    Swanson, M. E. C.
    Tegmark, Max
    Hamilton, Andrew J. S.
    Hill, J. Colin
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2008, 387 (04) : 1391 - 1402
  • [34] Impact of redshift information on cosmological applications with next-generation radio surveys
    Camera, Stefano
    Santos, Mario G.
    Bacon, David J.
    Jarvis, Matt J.
    McAlpine, Kim
    Norris, Ray P.
    Raccanelli, Alvise
    Roettgering, Huub
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 427 (03) : 2079 - 2088
  • [35] THE NEXT-GENERATION
    GREENGARD, S
    PERSONNEL JOURNAL, 1994, 73 (03) : 40 - &
  • [36] NEXT-GENERATION ROUTER MODEL FOR UNICAST AND MULTICAST COMMUNICATION SIMULATIONS
    Urban, Mihajlo J.
    EUROCON 2009: INTERNATIONAL IEEE CONFERENCE DEVOTED TO THE 150 ANNIVERSARY OF ALEXANDER S. POPOV, VOLS 1- 4, PROCEEDINGS, 2009, : 1870 - 1875
  • [37] Machine-learned potentials for next-generation matter simulations
    Pascal Friederich
    Florian Häse
    Jonny Proppe
    Alán Aspuru-Guzik
    Nature Materials, 2021, 20 : 750 - 761
  • [38] Next-generation polymerized human hemoglobins in hepatic bioreactor simulations
    Cuddington, Clayton
    Moses, Savannah
    Belcher, Donald
    Ramesh, Niral
    Palmer, Andre
    BIOTECHNOLOGY PROGRESS, 2020, 36 (03)
  • [39] Next-Generation Accurate, Transferable, and Polarizable Potentials for Material Simulations
    Hogan, Adam
    Space, Brian
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2020, 16 (12) : 7632 - 7644
  • [40] First Radial Velocity Results From the MINiature Exoplanet Radial Velocity Array (MINERVA)
    Wilson, Maurice L.
    Eastman, Jason D.
    Cornachione, Matthew A.
    Wang, Sharon X.
    Johnson, Samson A.
    Sliski, David H.
    Schap, William J., III
    Morton, Timothy D.
    Johnson, John Asher
    McCrady, Nate
    Wright, Jason T.
    Wittenmyer, Robert A.
    Plavchan, Peter
    Blake, Cullen H.
    Swift, Jonathan J.
    Bottom, Michael
    Baker, Ashley D.
    Barnes, Stuart, I
    Berlind, Perry
    Blackhurst, Eric
    Beatty, Thomas G.
    Bolton, Adam S.
    Cale, Bryson
    Calkins, Michael L.
    Colon, Ana
    de Vera, Jon
    Esquerdo, Gilbert
    Falco, Emilio E.
    Fortin, Pascal
    Garcia-Mejia, Juliana
    Geneser, Claire
    Gibson, Steven R.
    Grell, Gabriel
    Groner, Ted
    Halverson, Samuel
    Hamlin, John
    Henderson, M.
    Horner, J.
    Houghton, Audrey
    Janssens, Stefaan
    Jonas, Graeme
    Jones, Damien
    Kirby, Annie
    Lawrence, George
    Luebbers, Julien Andrew
    Muirhead, Philip S.
    Myles, Justin
    Nava, Chantanelle
    Rivera-Garcia, Kevin O.
    Reed, Tony
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2019, 131 (1005)