Optimal Parameter Selection Using Explainable AI for Time-Series Anomaly Detection

被引:0
|
作者
Sumita, Shimon [1 ]
Nakagawa, Hiroyuki [1 ]
Tsuchiya, Tatsuhiro [1 ]
机构
[1] Osaka Univ, Osaka, Japan
关键词
Time-series anomaly detection; Self-adaptive anomaly detection; Explainable AI (XAI);
D O I
10.1007/978-3-031-21203-1_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Time-series anomaly detection is a technique for detecting unusual values, changes, or movements in a large amount of data arranged in time-series. It is primarily used in the fields of intrusion detection, medical diagnosis, and industrial defect damage detection and necessary to realize agents that operate intelligently and autonomously, such as changing system behavior based on detected anomalies. SALAD is a real-time time-series anomaly detection method based on deep learning. It is lightweight and determines anomaly detection threshold flexibly; however, experts need to determine an appropriate value for a parameter so that it suits any given recurrent time series, and this inhibits the realization of the agent. In this study, we propose a method to determine automatically the optimal parameter value in SALAD's prediction model by utilizing XAI. We use SHAP, which provides interpretability to the prediction by the deep learning model. Through evaluation experiment, we demonstrate that our method is effective and provide an example of the use of XAI for time-series anomaly detection.
引用
收藏
页码:281 / 296
页数:16
相关论文
共 50 条
  • [1] Contrastive Time-Series Anomaly Detection
    Kim, Hyungi
    Kim, Siwon
    Min, Seonwoo
    Lee, Byunghan
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (10) : 5053 - 5065
  • [2] Spacecraft Time-Series Anomaly Detection Using Transfer Learning
    Baireddy, Sriram
    Desai, Sundip R.
    Mathieson, James L.
    Foster, Richard H.
    Chan, Moses W.
    Comer, Mary L.
    Delp, Edward J.
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2021, 2021, : 1951 - 1960
  • [3] OPTIMAL TIME-SERIES SELECTION OF QUASARS
    Butler, Nathaniel R.
    Bloom, Joshua S.
    ASTRONOMICAL JOURNAL, 2011, 141 (03):
  • [4] On the Quest for Foundation Generative-AI Models for Anomaly Detection in Time-Series Data
    Garcia Gonzalez, Gaston
    Casas, Pedro
    Martinez, Emilio
    Fernandez, Alicia
    9TH IEEE EUROPEAN SYMPOSIUM ON SECURITY AND PRIVACY WORKSHOPS, EUROS&PW 2024, 2024, : 252 - 260
  • [5] Adaptive Multivariate Time-Series Anomaly Detection
    Lv, Jianming
    Wang, Yaquan
    Chen, Shengjing
    INFORMATION PROCESSING & MANAGEMENT, 2023, 60 (04)
  • [6] Granger Causality for Time-Series Anomaly Detection
    Qiu, Huida
    Liu, Yan
    Subrahmanya, Niranjan A.
    Li, Weichang
    12TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2012), 2012, : 1074 - 1079
  • [7] Time-Series Anomaly Detection Service at Microsoft
    Ren, Hansheng
    Xu, Bixiong
    Wang, Yujing
    Yi, Chao
    Huang, Congrui
    Kou, Xiaoyu
    Xing, Tony
    Yang, Mao
    Tong, Jie
    Zhang, Qi
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 3009 - 3017
  • [8] Explainable time series anomaly detection using masked latent generative modeling
    Lee, Daesoo
    Malacarne, Sara
    Aune, Erlend
    PATTERN RECOGNITION, 2024, 156
  • [9] Spacecraft Time-Series Online Anomaly Detection Using Deep Learning
    Baireddy, Sriram
    Desai, Sundip R.
    Foster, Richard H.
    Chan, Moses W.
    Comer, Mary L.
    Delp, Edward J.
    2023 IEEE AEROSPACE CONFERENCE, 2023,
  • [10] Exathlon: A Benchmark for Explainable Anomaly Detection over Time Series
    Jacob, Vincent
    Song, Fei
    Stiegler, Arnaud
    Rad, Bijan
    Diao, Yanlei
    Tatbul, Nesime
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2021, 14 (11): : 2613 - 2626