HIGHER ORDER POLYNOMIAL COMPLEX INVARIANTS FOR ONE-DIMENSIONAL ANHARMONIC POTENTIALS

被引:1
|
作者
Bhardwaj, S. B. [1 ]
Singh, Ram mehar [2 ]
Kumar, Vipin [2 ]
Kumar, Narender [3 ]
Chand, Fakir [4 ]
Gupta, Shalini [5 ]
机构
[1] SUS Govt Coll, Dept Phys, Matak Majri, Karnal 132041, India
[2] Chaudhary Devi Lal Univ, Dept Phys, Sirsa 125055, India
[3] Govt Coll, Dept Phys, Jind 126102, India
[4] Kurukshetra Univ, Dept Phys, Kurukshetra 136119, India
[5] HMR Inst Technol & Management, Dept Phys, Delhi, India
关键词
exact invariants; complex Hamiltonian; rationalization method; extended complex phase space approach; DEPENDENT HARMONIC-OSCILLATOR; SCHRODINGER-EQUATION; DYNAMICAL INVARIANT; QUANTUM-SYSTEMS; CONSTRUCTION; STABILITY; MOTION;
D O I
10.1016/S0034-4877(24)00011-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Exact quadratic in momenta complex invariants are investigated for both time independent and time dependent one-dimensional Hamiltonian systems possessing higher order nonlinearities within the framework of the rationalization method. The extended complex phase space approach is utilized to map a real system into complex space. Such invariants are expected to play a role in the analysis of complex trajectories and help to understand some new phenomena associated with complex potentials.
引用
收藏
页码:71 / 86
页数:16
相关论文
共 50 条
  • [41] Exact fourth order invariants for one-dimensional time-dependent Hamiltonian systems
    N. Kumar
    F. Chand
    S. C. Mishra
    Indian Journal of Physics, 2015, 89 : 709 - 712
  • [42] Complex dynamical invariants for two-dimensional complex potentials
    J S VIRDI
    F CHAND
    C N KUMAR
    S C MISHRA
    Pramana, 2012, 79 : 173 - 183
  • [43] One-dimensional dark solitons in lattices with higher-order nonlinearities
    Primatarowa, M. T.
    Kamburova, R. S.
    18TH INTERNATIONAL SCHOOL ON CONDENSED MATTER PHYSICS: CHALLENGES OF NANOSCALE SCIENCE: THEORY, MATERIALS, APPLICATIONS, 2014, 558
  • [44] Complex dynamical invariants for two-dimensional complex potentials
    Virdi, J. S.
    Chand, F.
    Kumar, C. N.
    Mishra, S. C.
    PRAMANA-JOURNAL OF PHYSICS, 2012, 79 (02): : 173 - 183
  • [45] HIGHER-ORDER PEIERLS DISTORTION OF ONE-DIMENSIONAL CARBON SKELETONS
    KERTESZ, M
    HOFFMANN, R
    SOLID STATE COMMUNICATIONS, 1983, 47 (02) : 97 - 102
  • [46] Higher order finite element solution of the one-dimensional Schrodinger equation
    Eid, R
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1999, 71 (02) : 147 - 152
  • [47] Computer experiment on solitons in one-dimensional anharmonic crystals
    Ozawa, Satoru
    Hiki, Yosio
    Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes & Review Papers, 1995, 34 (5 B): : 2590 - 2595
  • [48] Electron pairing in one-dimensional anharmonic crystal lattices
    Velarde, M. G.
    Brizhik, L.
    Chetverikov, A. P.
    Cruzeiro, L.
    Ebeling, W.
    Roepke, G.
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2012, 112 (02) : 551 - 565
  • [49] COMPUTER EXPERIMENT ON SOLITONS IN ONE-DIMENSIONAL ANHARMONIC CRYSTALS
    OZAWA, S
    HIKI, Y
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1995, 34 (5B): : 2590 - 2595