HIGHER ORDER POLYNOMIAL COMPLEX INVARIANTS FOR ONE-DIMENSIONAL ANHARMONIC POTENTIALS

被引:1
|
作者
Bhardwaj, S. B. [1 ]
Singh, Ram mehar [2 ]
Kumar, Vipin [2 ]
Kumar, Narender [3 ]
Chand, Fakir [4 ]
Gupta, Shalini [5 ]
机构
[1] SUS Govt Coll, Dept Phys, Matak Majri, Karnal 132041, India
[2] Chaudhary Devi Lal Univ, Dept Phys, Sirsa 125055, India
[3] Govt Coll, Dept Phys, Jind 126102, India
[4] Kurukshetra Univ, Dept Phys, Kurukshetra 136119, India
[5] HMR Inst Technol & Management, Dept Phys, Delhi, India
关键词
exact invariants; complex Hamiltonian; rationalization method; extended complex phase space approach; DEPENDENT HARMONIC-OSCILLATOR; SCHRODINGER-EQUATION; DYNAMICAL INVARIANT; QUANTUM-SYSTEMS; CONSTRUCTION; STABILITY; MOTION;
D O I
10.1016/S0034-4877(24)00011-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Exact quadratic in momenta complex invariants are investigated for both time independent and time dependent one-dimensional Hamiltonian systems possessing higher order nonlinearities within the framework of the rationalization method. The extended complex phase space approach is utilized to map a real system into complex space. Such invariants are expected to play a role in the analysis of complex trajectories and help to understand some new phenomena associated with complex potentials.
引用
收藏
页码:71 / 86
页数:16
相关论文
共 50 条
  • [1] One-dimensional higher order elements
    1600, Springer Verlag (216):
  • [2] Arbitrarily accurate eigenvalues for one-dimensional polynomial potentials
    Meurice, Y
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (41): : 8831 - 8846
  • [3] Complex dynamical invariants for one-dimensional classical systems
    Singh, S
    Kaushal, RS
    PHYSICA SCRIPTA, 2003, 67 (03) : 181 - 185
  • [4] One-dimensional Viscous Diffusion Equation of Higher Order with Gradient Dependent Potentials and Sources
    Yang CAO
    Jing Xue YIN
    Ying Hua LI
    Acta Mathematica Sinica,English Series, 2018, (06) : 959 - 974
  • [5] One-dimensional Viscous Diffusion Equation of Higher Order with Gradient Dependent Potentials and Sources
    Yang CAO
    Jing Xue YIN
    Ying Hua LI
    Acta Mathematica Sinica, 2018, 34 (06) : 959 - 974
  • [6] One-dimensional Viscous Diffusion Equation of Higher Order with Gradient Dependent Potentials and Sources
    Cao, Yang
    Yin, Jing Xue
    Li, Ying Hua
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2018, 34 (06) : 959 - 974
  • [7] One-dimensional viscous diffusion equation of higher order with gradient dependent potentials and sources
    Yang Cao
    Jing Xue Yin
    Ying Hua Li
    Acta Mathematica Sinica, English Series, 2018, 34 : 959 - 974
  • [8] One-Dimensional Schrodinger Operators with Complex Potentials
    Derezinski, Jan
    Georgescu, Vladimir
    ANNALES HENRI POINCARE, 2020, 21 (06): : 1947 - 2008
  • [9] INVARIANTS OF PARTICLE MOTION IN ONE-DIMENSIONAL TIME-DEPENDENT POTENTIALS
    GIACOMINI, HJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (17): : L865 - L869
  • [10] Eigensolutions for one-dimensional cuts of bond order potentials
    Lagana, A
    Spatola, P
    deAspuru, GO
    Ferraro, G
    Gervasi, O
    CHEMICAL PHYSICS LETTERS, 1997, 267 (5-6) : 403 - 410