Gauss-Legendre type quadrature iterative method for fuzzy Fredholm integral equations

被引:0
|
作者
Bica, Alexandru Mihai [1 ]
Ziari, Shokrollah [2 ]
机构
[1] Univ Oradea, Dept Math & Informat, Univ St 1, Oradea 410087, Romania
[2] Islamic Azad Univ, Dept Math, South Tehran Branch, Tehran, Iran
关键词
Gauss-Legendre type quadrature formula; Fuzzy Fredholm integral equations of second; kind; Picard iterations; Error estimate; Convergence analysis; NUMERICAL-SOLUTION; ERROR ESTIMATION; 2ND KIND; APPROXIMATION;
D O I
10.1016/j.fss.2023.108823
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we obtain an iterative method for the numerical solution of second kind fuzzy Fredholm integral equations by applying appropriate composite fuzzy quadrature formula. We approach a general fuzzy quadrature formula and show that the three-point and four-point Gauss-Legendre type fuzzy quadrature formulas are the best choice from computational cost and accuracy point of view. The convergence of the method is proved by providing the error estimates expressed in terms of the Lipschitz constant of the Picard iterations. Some numerical results confirm the obtained theoretical result and illustrate the performances of the three point Gauss-Legendre method in comparison with the techniques generated by the fuzzy Newton-Cotes and Gauss-Lobatto quadrature formulas, the results being tested on the Simpson and on the four point Gauss-Legendre and Gauss-Lobatto quadrature formulas in particular. The numerical experiment suggests that five point or more point fuzzy quadrature formulas are useless due to the accumulation of errors and the grown computational cost.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Solution of second kind Fredholm integral equations by means of Gauss and anti-Gauss quadrature rules
    de Alba, Patricia Diaz
    Fermo, Luisa
    Rodriguez, Giuseppe
    NUMERISCHE MATHEMATIK, 2020, 146 (04) : 699 - 728
  • [42] Numerical Solution of SOR Iterative Method for Fuzzy Fredholm Integral Equations of Second Kind
    Ali, L. H.
    Sulaiman, J.
    Hashim, S. R. M.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MATHEMATICS, ENGINEERING AND INDUSTRIAL APPLICATIONS 2018 (ICOMEIA 2018), 2018, 2013
  • [43] Comprehensive gravitational modeling of the vertical cylindrical prism by Gauss-Legendre quadrature integration
    Asgharzadeh, M. F.
    Hashemi, H.
    von Frese, R. R. B.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2018, 212 (01) : 591 - 611
  • [44] Iterative Method for a System of Nonlinear Fredholm Integral Equations
    Wang, Keyan
    Wang, Qisheng
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021 (2021)
  • [45] Implementation of a Reflectarray Antenna with Isoflux Beam Based on Gauss-legendre Quadrature Technique
    Karimipour, Majid
    Aryanian, Iman
    Hasani, Ali
    2019 27TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE 2019), 2019, : 1327 - 1332
  • [46] MINIMAX APPROXIMATIONS TO THE ZEROS OF P-N(X) AND GAUSS-LEGENDRE QUADRATURE
    LETHER, FG
    WENSTON, PR
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1995, 59 (02) : 245 - 252
  • [47] CLENSHAW-CURTIS AND GAUSS-LEGENDRE QUADRATURE FOR CERTAIN BOUNDARY ELEMENT INTEGRALS
    Elliott, David
    Johnston, Barbara M.
    Johnston, Peter R.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 31 (01): : 510 - 530
  • [48] A new method for gravity modeling using tesseroids and 2D Gauss-Legendre quadrature rule
    Zhong, Yiyuan
    Ren, Zhengyong
    Chen, Chaojian
    Chen, Huang
    Yang, Zhi
    Guo, Zhenwei
    JOURNAL OF APPLIED GEOPHYSICS, 2019, 164 : 53 - 64
  • [49] On the Gauss-Legendre quadrature rule of deep energy method for one-dimensional problems in solid mechanics
    Le-Duc, Thang
    Vo, Tram Ngoc
    Nguyen-Xuan, H.
    Lee, Jaehong
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2024, 242
  • [50] Numerical integration method for triple integrals using the second kind Chebyshev wavelets and Gauss-Legendre quadrature
    Zhou, Fengying
    Xu, Xiaoyong
    Zhang, Xijing
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (03): : 3027 - 3052