Three solutions to a Neumann boundary value problem driven by p(x)-biharmonic operator

被引:1
|
作者
Allali, Zakaria El [1 ]
Hamdani, Mohamed Karim [2 ,3 ,4 ]
Taarabti, Said [5 ]
机构
[1] Mohammed First Univ, Multidisciplinary Fac Nador, Team Modeling & Sci Comp, LaMAO, Oujda, Morocco
[2] Mil Acad, Ctr Mil Res, Sci & Technol Def Lab LR19DN01, Grombalia, Tunisia
[3] Mil Sch Aeronaut Special, Sfax, Tunisia
[4] Univ Sfax, Fac Sci Sfax, Math Dept, Sfax, Tunisia
[5] Ibn Zohr Univ, Natl Sch Appl Sci Agadir, LISTI, Agadir, Morocco
关键词
p(x)-biharmonic; Three solutions; Variable exponent; Neumann boundary conditions; 4TH-ORDER EIGENVALUE PROBLEM; VARIABLE EXPONENT; EXISTENCE;
D O I
10.1007/s41808-023-00257-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we establish the existence of at least three distinct weak solutions for a specific class of quasilinear elliptic equations. These equations incorporate the p(x)-biharmonic operator and are constrained by Neumann boundary conditions. Our technical approach is primarily founded on Ricceri's three critical points theorem (Nonlinear Anal 70:3084-3089, 2009). In addition, we give an example to show our key findings.
引用
收藏
页码:195 / 209
页数:15
相关论文
共 50 条