Polyphenol-coated hollow fiber system for energy-efficient dehumidification in air-conditioning

被引:2
|
作者
Upadhayaya, Lakshmeesha [1 ,2 ]
Gebreyohannes, Abaynesh Yihdego [1 ,2 ]
Shahzad, Muhammad Wakil [3 ]
Syed, Usman T. [1 ,2 ]
Aristizabal, Sandra L. [1 ,2 ]
Gorecki, Radoslaw [1 ,2 ]
Nunes, Suzana P. [1 ,2 ,4 ,5 ]
机构
[1] King Abdullah Univ Sci & Technol KAUST, Environm Sci & Engn Program, Biol & Environm Sci & Engn Div BESE, Thuwal 239556900, Saudi Arabia
[2] King Abdullah Univ Sci & Technol KAUST, Adv Membranes & Porous Mat AMPM Ctr, Thuwal, Saudi Arabia
[3] Northumbria Univ, Mech & Construct Engn Dept, Newcastle Upon Tyne, England
[4] King Abdullah Univ Sci & Technol KAUST, Chem Program & Chem Engn Program, Phys Sci & Engn Div PSE, Thuwal 239556900, Saudi Arabia
[5] King Abdullah Univ Sci & Technol KAUST, Thuwal 239556900, Saudi Arabia
关键词
Hollow fibers; Dehumidification; Green coating; Coefficient of performance; Polyphenol; WATER-VAPOR PERMEABILITY; FLUE-GAS DEHYDRATION; COMPOSITE MEMBRANES; GRAPHENE OXIDE; PERMEATION; NANOPARTICLES; PERFORMANCE; SEPARATION; TRANSPORT; GREEN;
D O I
10.1016/j.memsci.2023.122215
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Increasing temperatures have worldwide become a high health risk. High humidity aggravates the risk and reduces the comfort perception. Conventional air conditioners produce annually the equivalent of 2150 million carbon dioxide tons per year. Dehumidification is responsible for a large portion of it. Membrane-based dehumidification is energy-efficient since water vapor removal is carried out at isothermal conditions without toxic materials. This work demonstrates a membrane dehumidification system based on industry-ready prototypes containing polymeric hollow fibers coated with a green polyphenol coating, showcasing/exhibiting a remarkable water vapor transport rate with selectivity. Long-term testing proved over a year of operation with only a minimal decline in vapor transport. And the proposed system has 4-5 times higher coefficient of performance (COP) than conventional dehumidifiers, and it is a highly competitive energy-saving device with a low contribution to emissions and a smaller footprint.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] ENERGY-EFFICIENT AIR-CONDITIONING SYSTEM
    SUENAGA, T
    [J]. JAPAN TELECOMMUNICATIONS REVIEW, 1986, 28 (03): : 217 - 224
  • [2] Experimental evaluation of desiccant dehumidification and air-conditioning system for energy-efficient storage of dried fruits
    Mahmood, Muhammad H.
    Sultan, Muhammad
    Miyazaki, Takahiko
    [J]. BUILDING SERVICES ENGINEERING RESEARCH & TECHNOLOGY, 2020, 41 (04): : 454 - 465
  • [3] An energy-efficient air-conditioning system for hydrogen driven cars
    Linder, Marc
    Kulenovic, Rudi
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (04) : 3215 - 3221
  • [4] Hollow Fiber Membrane Dehumidification Device for Air Conditioning System
    Zhao, Baiwang
    Peng, Na
    Liang, Canzeng
    Yong, Wai Fen
    Chung, Tai-Shung
    [J]. MEMBRANES, 2015, 5 (04): : 722 - 738
  • [5] Proposed energy-efficient air-conditioning system using liquid desiccant
    Kinsara, Adnan A.
    Elsayed, Moustafa M.
    Al-Rabghi, Omar M.
    [J]. Pergamon Press Ltd, Oxford, United Kingdom (16):
  • [6] Proposed energy-efficient air-conditioning system using liquid desiccant
    Kinsara, AA
    Elsayed, MM
    AlRabghi, OM
    [J]. APPLIED THERMAL ENGINEERING, 1996, 16 (10) : 791 - 806
  • [7] A Magnetocaloric Booster Unit for Energy-Efficient Air-Conditioning
    Krautz, Maria
    Beyer, Maximilian
    Jaeschke, Christian
    Schinke, Lars
    Waske, Anja
    Seifert, Joachim
    [J]. CRYSTALS, 2019, 9 (02):
  • [8] An energy-efficient air-conditioning system with an exhaust fan integrated with a supply fan
    Wan, J. W.
    Zhang, W. J.
    Zhang, W. M.
    [J]. ENERGY AND BUILDINGS, 2009, 41 (12) : 1299 - 1305
  • [9] Smart and Energy Efficient Air-Conditioning System
    Refaat, Shady S.
    Abu-Rub, Haitham
    Mohamed, Amira
    [J]. 2017 19TH EUROPEAN CONFERENCE ON POWER ELECTRONICS AND APPLICATIONS (EPE'17 ECCE EUROPE), 2017,
  • [10] An Energy-Efficient Approach for Controlling Heating and Air-Conditioning Systems
    Lachhab, Fadwa
    Ouladsine, Radouane
    Bakhouya, Mohamed
    Essaaidi, Mohamed
    [J]. PROCEEDINGS OF 2017 INTERNATIONAL RENEWABLE & SUSTAINABLE ENERGY CONFERENCE (IRSEC' 17), 2017, : 478 - 484