CERN Super Proton Synchrotron Radiation Environment and Related Radiation Hardness Assurance Implications

被引:7
|
作者
Bilko, Kacper [1 ,2 ]
Alia, Ruben Garcia [1 ,2 ]
Francesca, Diego Di [1 ,2 ]
Aguiar, Ygor [1 ,2 ]
Danzeca, Salvatore [1 ,2 ]
Gilardoni, Simone [1 ,2 ]
Girard, Sylvain [2 ]
Esposito, Luigi Salvatore [1 ,2 ]
Fraser, Matthew Alexander [1 ,2 ]
Mazzola, Giuseppe [1 ,2 ]
Ricci, Daniel [1 ,2 ]
Sebban, Marc [2 ]
Velotti, Francesco Maria [1 ,2 ]
机构
[1] CERN, CH-1211 Geneva, Switzerland
[2] Univ St Etienne, UMR CNRS 5516, Lab Hubert Curien, St Etienne, France
关键词
Large Hadron Collider; Monitoring; Particle beams; Protons; Sensors; Loss measurement; Particle beam injection; Accelerator; beam loss monitor (BLM); beam losses; CERN; electronics; FLUKA; mixed-field radiation; Monte Carlo; optical fiber; radiophotoluminescence (RPL); super proton synchrotron (SPS); total ionizing dose (TID);
D O I
10.1109/TNS.2023.3261181
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The super proton synchrotron (SPS) is the second largest accelerator at CERN where protons are accelerated between 16 and 450 GeV/c. Beam losses, leading to the mixed-field radiation of up to MGy magnitude, pose a threat to the reliability of the electronic equipment and polymer materials located in the tunnel and its vicinity. In particular, in the arc sectors, where both main magnets and radiation sensors are periodically arranged, the total ionizing dose (TID) is of concern for the front-end electronics of a logarithmic position system (ALPS). The SPS is equipped with multiple radiation detection systems, such as beam loss monitors (BLMs), RadMons, and as of 2021, the distributed optical fiber radiation sensor (DOFRS) that combined all together provides a very comprehensive picture of both the TID spatial distribution and its time evolution. Within this study, the overview of measured 2021 and 2022 TID levels is presented, together with the demonstration of capabilities offered by the different radiation monitors. The DOFRS, supported by the passive radiophotoluminescence (RPL) dosimeter measurements, is used to assess the TID values directly at the electronic racks, which turned out to be reaching several tens of Gy/year, potentially affecting the ALPS lifetime.
引用
收藏
页码:1606 / 1615
页数:10
相关论文
共 50 条
  • [1] Dilepton radiation at the CERN super-proton synchrotron
    van Hees, Hendrik
    Rapp, Ralf
    NUCLEAR PHYSICS A, 2008, 806 : 339 - 387
  • [2] DOSES TO THE CERN 450-GEV SUPER PROTON SYNCHROTRON AND AN ESTIMATE OF RADIATION-DAMAGE
    SCHONBACHER, H
    CONINCKX, F
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1990, 288 (2-3): : 612 - 618
  • [3] Radiation Hardness of dSiPM Sensors in a Proton Therapy Radiation Environment
    Diblen, Faruk
    Buitenhuis, Tom
    Solf, Torsten
    Rodrigues, Pedro
    van der Graaf, Emiel
    van Goethem, Marc-Jan
    Brandenburg, Sytze
    Dendooven, Peter
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2017, 64 (07) : 1891 - 1896
  • [4] Distributed Optical Fiber Radiation Sensing in the Proton Synchrotron Booster at CERN
    Di Francesca, D.
    Toccafondo, I.
    Vecchi, G. Li
    Calderini, S.
    Girard, S.
    Alessi, A.
    Ferraro, R.
    Danzeca, S.
    Kadi, Y.
    Brugger, M.
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2018, 65 (08) : 1639 - 1644
  • [5] Light fragment production at CERN Super Proton Synchrotron
    Yu. B. Ivanov
    A. A. Soldatov
    The European Physical Journal A, 2017, 53
  • [6] Light fragment production at CERN Super Proton Synchrotron
    Ivanov, Yu. B.
    Soldatov, A. A.
    EUROPEAN PHYSICAL JOURNAL A, 2017, 53 (11):
  • [7] Inclusion of Radiation Environment Variability in Total Dose Hardness Assurance Methodology
    Xapsos, M. A.
    Stauffer, C.
    Phan, A.
    McClure, S. S.
    Ladbury, R. L.
    Pellish, J. A.
    Campola, M. J.
    LaBel, K. A.
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2017, 64 (01) : 325 - 331
  • [8] Generation of warm dense matter and strongly coupled plasmas using the High Radiation on Materials facility at the CERN Super Proton Synchrotron
    Tahir, Naeem A.
    Schmidt, Ruediger
    Brugger, Markus
    Assmann, Ralph
    Shutov, Alexander
    Lomonosov, Igor V.
    Gryaznov, Viktor
    Piriz, Antonio Roberto
    Udrea, Serban
    Hoffmann, Dieter H. H.
    Fortov, Vladimir E.
    Deutsch, Claude
    PHYSICS OF PLASMAS, 2009, 16 (08)
  • [9] IMPLEMENTING QML FOR RADIATION HARDNESS ASSURANCE
    WINOKUR, PS
    SEXTON, FW
    FLEETWOOD, DM
    TERRY, MD
    SHANEYFELT, MR
    DRESSENDORFER, PV
    SCHWANK, JR
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1990, 37 (06) : 1794 - 1805
  • [10] RADIATION HARDNESS ASSURANCE OF SPACE ELECTRONICS
    ADAMS, L
    HOLMESSIEDLE, A
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1992, 314 (02): : 335 - 344